ChemComm
Communication
polymers incorporating bitellurophene and their applications in
organic electronics are currently under investigation.
The authors acknowledge the financial support from the
National Research Foundation of Korea (NRF2012R1A2A1A01008797
&
20110026418) and from Key Research Institute Program
(NRF20120005860). We are grateful to Pohang Accelerator
Laboratory (Pohang, Korea) for allowing us to conduct the
GI-XRD measurements. In particular, D. S. Yang thanks the
support by the Global Ph.D. Fellowship Program in NRF
(2012H1A2004001).
Notes and references
1
(a) D. T. McQuade, A. E. Pullen and T. M. Swager, Chem. Rev., 2000,
00, 2537; (b) S. Allard, M. Forster, B. Souharce, H. Thiem and
1
Fig. 3 (a) Transfer and (b) output curves of the TFT device fabricated with the
pristine PDTDPPTe film. (c) Transfer and (d) output curves of the TFT device
fabricated with the thermally annealed (250 1C for 10 min) PDTDPPTe film.
U. Scherf, Angew. Chem., Int. Ed., 2008, 47, 4070; (c) Y.-J. Cheng,
S.-H. Yang and C.-S. Hsu, Chem. Rev., 2009, 109, 5868;
(d) G. M. Farinola and R. Ragni, Chem. Soc. Rev., 2011, 40, 3467.
*
OTS–SiO
2
/Si gate insulator. The device performances were measured in air.
2 (a) A. P. Zoombelt, S. G. J. Mathijssen, M. G. R. Turbiez,
M. M. Wienka and R. A. J. Janssen, J. Mater. Chem., 2010,
V
DS = ꢀ100 V. Inset: AFM images.
2
0, 2240; (b) L. Biniek, S. Fall, C. L. Chochos, D. V. Anokhin,
D. A. Ivanov, N. Leclerc, P. Leveque and T. Heiser, Macromolecules,
010, 43, 9779.
2
and PDTDPPTe films exhibited typical p-channel transistor
behavior. Initially, the hole mobility of the pristine PDTDPPTe
film (Fig. 3a and b) was determined to be 0.48 cm
3
(a) B. Tieke, A. R. Rabindranath, K. Zhang and Y. Zhu, Beilstein J.
Org. Chem., 2010, 6, 830; (b) S.-Y. Ku, M. A. Brady, N. D. Treat,
J. E. Cochran, M. J. Robb, E. J. Kramer, M. L. Chabinyc and
C. J. Hawker, J. Am. Chem. Soc., 2012, 134, 16040; (c) Z. Yi, X. Sun,
Y. Zhao, Y. Guo, X. Chen, J. Qin, G. Yu and Y. Liu, Chem. Mater.,
2012, 24, 4350.
2
ꢀ1 ꢀ1
V
s
5–6
2
ꢀ1 ꢀ1
(
I
on/Ioff E 10 , Vth = ꢀ1.0 V, mmax = 0.55 cm V
s ). However,
after subsequent annealing at 250 1C, the mobility value was
measured to be 1.47 cm V
current ratio of 10 (V = 2.2 V, mmax = 1.78 cm V
and d). The devices with PDTDPPT exhibited IDS–V
istics quite similar to those with PDTDPPTe. The mobility of
the OTFT device using an as-spun PDTDPPT film without
2
ꢀ1 ꢀ1
4 (a) H.-W. Lin, W.-Y. Lee, C. Lu, C.-J. Lin, H.-C. Wu, Y. W. Lin, B. Ahn,
Y. Rho, M. Ree and W.-C. Chen, Polym. Chem., 2012, 3, 767;
(b) H.-W. Lin, W.-Y. Lee and W.-C. Chen, J. Mater. Chem., 2012,
22, 2120; (c) J. S. Ha, K. H. Kim and D. H. Choi, J. Am. Chem. Soc.,
s
while maintaining an on–off
5
2
ꢀ1 ꢀ1
s
, Fig. 3c
th
G
character-
2
011, 133, 10364.
5
(a) J. Roncali, Chem. Rev., 1992, 92, 711; (b) Handbook of Oligo
and Polythiophenes, ed. D. Fichou, Wiley-VCH, Weinheim, Germany,
1999; (c) R. D. McCullough, Adv. Mater., 1998, 10, 93.
2
ꢀ1 ꢀ1
4–5
thermal annealing was around 0.24 cm V
s
(Ion/Ioff E 10
) (Fig. S13a and b in ESI†);
after the sample was annealed at 250 1C, the mobility was
,
2
ꢀ1 ꢀ1
6 (a) Handbook of Chalcogen Chemistry: New Perspectives in Sulfur,
Selenium and Tellurium, ed. F. A. Devillanova, Royal Society of
Chemistry, 2007.
7 (a) A. Patra and M. Bendikov, J. Mater. Chem., 2010, 20, 422;
(b) A. Patra, Y. H. Wijsboom, G. Leitus and M. Bendikov, Chem.
Mater., 2011, 23, 896.
V
th = 10.1 V, mmax = 0.30 cm V
s
2
ꢀ1 ꢀ1
4–5
determined to be 0.62 cm V
mmax = 0.77 cm V
To elucidate the origin of the higher performance of
the OTFT fabricated using thermally annealed PDTDPPTe, the
topography of the semiconducting layer deposited on the OTS-
s
(I /I E 10 , Vth = 10 V,
on off
2
ꢀ1 ꢀ1
s ) (Fig. S13c and d in ESI†).
8
(a) N. A. G. Bandeira, L. F. Veiros, M. J. Calhorda and J. Novosad,
Inorg. Chim. Acta, 2003, 356, 319; (b) P. C. Srivastava, S. Bajpai,
C. Ram, R. Kumar, J. P. Jasinski and R. J. Butcher, J. Organomet.
Chem., 2004, 689, 194.
2
treated SiO substrate was analyzed and is shown in the insets
9
(a) Y. Narita and K. Takeda, Jpn. J. Appl. Phys., 2006, 45, 2628;
(b) P. Data, M. Lapkowski, R. Motyka and J. Suwi n´ ski, Electrochim.
Acta, 2012, 83, 271.
of Fig. 3. Consistent with annealing-induced crystallinity, a
change in the morphology was clearly observed in the AFM
images of the as-spun and annealed films. The pristine
PDTDPPTe film showed large crystallites that densely covered
the surface (average roughness o3.8 nm). Subsequently, after
thermal annealing, the sizes of the crystallites increased and
1
0 (a) A. Patra, Y. H. Wijsboom, G. Leitus and M. Bendikov, Org. Lett.,
2009, 11, 1487; (b) A. A. Jahnke and D. S. Seferos, Macromol. Rapid
Commun., 2011, 32, 943; (c) G. L. Gibson, T. M. McCormick and
D. S. Seferos, J. Am. Chem. Soc., 2012, 134, 539; (d) M. Lapkowski,
R. Motyka, J. Suwi n´ ski and P. Data, Macromol. Chem. Phys., 2012,
213, 29.
the film surface consisted of more fibrous crystalline domains 11 (a) X. Zhang, L. J. Richter, D. M. DeLongchamp, R. J. Kline,
M. R. Hammond, I. McCulloch, M. Heeney, R. S. Ashraf,
that were highly packed and densely connected by polymer
J. N. Smith, T. D. Anthopoulos, B. Schroeder, Y. H. Geerts,
chains (average roughness o6.2 nm) (Fig. S15 in ESI†).
D. A. Fischer and M. F. Toney, J. Am. Chem. Soc., 2011, 133, 15073;
In conclusion, we first report the synthesis of a tellurophene-
and DPP-based conjugated polymer using the Stille coupling
reaction (88% yield). The PDTDPPTe polymer exhibited a high
(b) J. S. Lee, S. K. Son, S. Song, H. Kim, D. R. lee, K. Kim, M. J. Ko,
D. H. Choi, B. S. Kim and J. H. Cho, Chem. Mater., 2012, 24, 1316.
2 M. Shahid, R. S. Ashraf, Z. Huang, A. J. Kronemeijer, T. McCarthy-
Ward, I. McCulloch, J. R. Durrant, H. Sirringhaus and M. Heeney,
J. Mater. Chem., 2012, 22, 12817.
1
1
2
ꢀ1 ꢀ1
hole mobility (mmax = 1.78 cm
V
s ), which is attributed
3 (a) T. J. Barton and R. W. Roth, J. Organomet. Chem., 1972, 39, C66;
to the fact that the polymer chains featured better edge-on
orientation and the strong donor ability of the tellurophene unit
induced stronger intermolecular p–p interactions. New conjugated
(
b) D. P. Sweat and C. E. Stephens, Synthesis, 2009, 3214; (c) Y. Li,
Z. Li, C. Wang, H. Li, H. Lu, B. Xu and W. Tian, J. Polym. Sci., Part A,
2010, 48, 2765.
This journal is c The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 5495--5497 5497