4
28
S. Das et al. / Inorganica Chimica Acta 372 (2011) 425–428
the counter anion of the Ag(I) salt. Further studies are in progress
on other systems in our laboratory.
Acknowledgments
Financial support received from DRDO and DST, New Delhi,
India (to P.K.B.) is gratefully acknowledged. S.S. thanks the CSIR,
India for Senior Research Fellowship. We thank Professor D.
Goswami for the NLO data.
Appendix A. Supplementary material
CCDC 617604, 617605 and 617606 contain the supplementary
crystallographic data for 1–3. These data can be obtained free of
Fig. 3. A perspective view of the zigzag structure of 3.
N
Symmetric
charge transfer
Asymmetric
charge transfer
D
References
π
NC CN
NC CN
AgX
Ag
[1] (a) O.M. Yaghi, G. Li, H. Li, Nature 378 (1995) 703;
(b) R. Kitaura, K. Seki, G. Akiyama, S. Kitagawa, Angew. Chem., Int. Ed. 42
(2003) 428;
D
π
A
Ag
N
A
-
-
4
X = NO , BF
3
π
D
N
(c) B. Moulton, M.J. Zaworotko, Chem. Rev. 101 (2001) 1629;
(d) J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y. Jin, Y.J. Jeon, K. Kim, Nature 404
Low δ Value
(
2000) 982.
L5 NC CN
Planner congugated unit
Very High δ Value
[2] M.A. Withersby, A.J. Blake, N.R. Champness, P. Hubberstey, W.-S. Li, M.
Schröder, Angew. Chem., Int. Ed. Engl. 36 (1997) 2327.
Scheme 1. Schematic representation of Ag(I) coordination polymer based on D–
A NLO-phore for enhanced TPA activity.
p–
[3] O.R. Evans, W. Lin, Acc. Chem. Res. 35 (2002) 511.
[
4] (a) Y. Niu, Y. Song, H. Hou, Y. Zhu, Inorg. Chem. 44 (2005) 2553;
b) Q.-F. Zhang, Y. Niu, W.-H. Leung, Y. Song, I.D. Williams, X. Xin, Chem.
Commun. (2001) 1126;
c) S. Shi, W. Ji, S.H. Tang, J.P. Lang, X.Q. Xin, J. Am. Chem. Soc. 116 (1994) 3615.
(
(
The ligand L exhibits a broad and intense intra-ligand charge
transfer (ILCT) band at kmax = 435. This band is red-shifted with in-
[5] M. Albota, D. Beljonne, J.-L. Brédas, J.E. Ehrlich, J.-Y. Fu, A. Heikal, S.E. Hess, T.
Kogej, M.D. Levin, S.R. Marder, D. McCord-Maughon, J.W. Perry, H. Röckel, M.
Rumi, G. Subramaniam, W.W. Webb, X.-L. Wu, C. Xu, Science 281 (1998) 1653.
creased
e value upon complexation with Ag(I)–ion depending on
[
6] (a) X.M. Wang, D. Wang, G.Y. Zhou, W.T. Yu, Y.F. Zhou, Q. Fang, M.H. Jiang, J.
Mater. Chem. 11 (2001) 1600;
the polymeric structure. The nonlinear optical measurements are
performed in DMF solution in the near-infrared region since it is
clear from the UV–Vis spectra that the ligand (L), solvent and all
the coordination polymers (1–3) are transparent in this region.
(
b) F. Lincker, P. Masson, J.-F. Nicoud, P. Didier, L. Guidoni, J.-Y. Bigot, J.
Nonlinear Opt. Phys. Mater. Sci. 14 (2005) 319.
7] (a) R.H. Kohler, J. Cao, W.R. Zipfel, W.W. Webb, M.R. Hansen, Science 276
(1997) 2039;
[
(
(
(
b) J.D. Bhawalkar, G.S. He, P.N. Prasad, Opt. Commun. 119 (1995) 587;
c) J.H. Strickler, W.W. Webb, Adv. Mater. 5 (1993) 479;
d) Q. Zheng, G.S. He, T. -C. Lin, P.N. Prasad, J. Mater. Chem. 13 (2003) 2499;
The free ligand L exhibits
–3 show much higher TPA activity at the same wavelength with
the magnitude of value depending on the structure of the coor-
dination polymer. The value for 2 and 3 are found to be 1150
and 1040 GM, respectively, while 1 shows = 1800 GM. The in-
creased dimensionality in 1 could be possibly the factor responsi-
ble for higher TPA cross-section [6a]. The value of 2 is larger
than that of 3 which can be attributed to the formation of more
symmetric D– –A– –D unit (Scheme 1) in the former.
In conclusion, we have synthesized various Ag(I) coordination
polymers based on D– –A NLO-phore for enhanced two-photon
2
r value of 200 GM at 880 nm while
1
r
2
(e) J.D. Bhawalkar, N.D. Kumar, C.F. Zhao, P.N. Prasad, J. Clin. Laser Med. Surg.
5 (1997) 201.
1
r
2
[
[
8] S.K. Ghosh, J. Ribas, P.K. Bharadwaj, Cryst. Eng. Commun. 6 (2004) 250.
9] M. Sheik-Bahaei, A.A. Said, T. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J.
Quantum Electron. 26 (1990) 760.
r
2
[
[
10] S. Das, A. Nag, D. Goswami, P.K. Bharadwaj, J. Am. Chem. Soc. 128 (2006) 402.
11] P. Sengupta, J. Balaji, S. Banerjee, R. Philip, G.R. Kumar, S. Maiti, J. Chem. Phys.
r
2
112 (2000) 9201.
p
p
[12] D. Venkataraman, G.B. Gardner, S. Lee, J.S. Moore, J. Am. Chem. Soc. 117 (1995)
11600.
[
13] H.-P. Wu, C. Janiak, G. Rheinwald, H. Lang, J. Chem. Soc., Dalton Trans. (1999)
83.
p
1
absorption cross-section values. The TPA efficiency depends upon
the structure of the polymeric architecture which is controlled by
[
14] Y.-B. Dong, G.-X. Jin, M.D. Smith, R.-Q. Huang, B. Tang, H.-C. zur Loye, Inorg.
Chem. 41 (2002) 4909.