GModel
CATTOD-8284; No. of Pages9
ARTICLE IN PRESS
8
K. Leus et al. / Catalysis Today xxx (2012) xxx–xxx
Scheme 3. Pathway to cyclohexenol formation.
of cyclohexenol as shown in Scheme 3. Cyclohexenol can then be
oxidized further to 2-cyclohexene-1-one, this conversion was also
shown by Murahashi et al. [44].
[8] M.G. Goesten, J. Juan-Alcaniz, E.V. Ramos-Fernandez, K.B.S.S. Gupta, E. Stavitski,
H. van Bekkum, J. Gascon, F. Kapteijn, Journal of Catalysis 281 (2011) 177–187.
[9] W.Q. Kan, B. Liu, J. Yang, Y.Y. Liu, J.F. Ma, Crystal Growth and Design 12 (2012)
2288–2298.
[10] J. Rocha, L.D. Carlos, F.A.A. Paz, D. Ananias, Chemical Society Reviews 40 (2011)
926–940.
[11] H. Liu, Y.G. Zhao, Z.J. Zhang, N. Nijem, Y.J. Chabal, H.P. Zeng, J. Li, Advanced
Functional Materials 21 (2011) 4754–4762.
4. Conclusions
12 Y.G. Zhao, H.H. Wu, T.J. Emge, Q.H. Gong, N. Nijem, Y.J. Chabal, L.Z. Kong, D.C.
Langreth, H. Liu, H.P. Zeng, J. Li, Chemistry – A European Journal 17 (2011)
5101–5109.
[13] T.K. Prasad, D.H. Hong, M.P. Suh, Chemistry – A European Journal 16 (2010)
14043–14050.
[14] J.P.S. Mowat, S.R. Miler, J.M. Griffin, V.R. Seymour, S.E. Ashbrook, S.P. Thompson,
D. Fairen-Jimenez, A.M. Banu, T. Duren, P.A. Wright, Inorganic Chemistry 50
(2011) 10844–10858.
[15] C. Zlotea, D. Phanon, M. Mazaj, D. Heurtaux, V. Guillerm, C. Serre, P. Horcajada,
T. Devic, E. Magnier, F. Cuevas, G. Ferey, P.L. Llewellyn, M. Latroche, Dalton
Transactions 40 (2011) 4879–4881.
We succeeded in the post-functionalization of NH2-MIL-47 with
TiO(acac)2.13C CP/MAS NMR, 1H NMR and DRIFTS measurements
clearly established the effectiveness of the grafting procedure,
whereas XRPD measurements proved the stability of the bimetal-
lic MOF during the grafting process. The obtained NH2-MIL-47 [Ti]
exhibits a significantly higher cyclohexene conversion compared
to the non-functionalized material, probably mainly due to the
extra active sites. Furthermore, no leaching of V or Ti was detected.
Regenerability tests have shown that only a slight increase in
cyclohexene conversion is observed during the first 3 runs. EPR
measurements indicate that about 17% of the V+IV sites are oxi-
dized to V+V in the first two hours of catalysis. In agreement with
the latter, the general mechanism of the epoxidation with O2 and
aldehydes shows the generation of vanadium-oxo species which is
[16] F. Vermoortele, M. Vandichel, B. Van de Voorde, R. Ameloot, M. Waroquier,
V. Van Speybroeck, D. De Vos, Angewandte Chemie International Edition 51
(2012) 4887–4890.
[17] S.M. Cohen, Chemical Reviews 112 (2012) 970–1000.
[18] N.V. Maksimchuk, K.A. Kovalenko, S.S. Arzumanov, Y.A. Chesalov, M.S. Mel-
gunov, A.G. Stepanov, V.P. Fedin, O.A. Kholdeeva, Inorganic Chemistry 49 (2010)
2920–2930.
[19] M.H. Alkordi, Y.L. Liu, R.W. Larsen, J.F. Eubank, M. Eddaoudi, Journal of the
American Chemical Society 130 (2008) 12639–12641.
accompanied by a partial oxidation of the V centers toward V+V
.
[20] O.V. Zalomaeva, K.A. Kovalenko, Y.A. Chesalov, M.S. Mel’gunov, V.I. Zaikovskii,
V.V. Kaichev, A.B. Sorokin, O.A. Kholdeeva, V.P. Fedin, Dalton Transactions 40
(2011) 1441–1444.
Acknowledgments
[21] M.J. Ingleson, J.P. Barrio, J.B. Guilbaud, Y.Z. Khimyak, M.J. Rosseinsky, Chemical
Communications (23) (2008) 2680–2682.
[22] S. Bhattacharjee, D.A. Yang, W.S. Ahn, Chemical Communications 47 (2011)
3637–3639.
[23] K. Leus, I. Muylaert, M. Vandichel, G.B. Marin, M. Waroquier, P. Van der Voort,
Chemical Communications 46 (2010) 5085–5087.
[24] K. Leus, M. Vandichel, Y.Y. Liu, I. Muylaert, J. Musschoot, S. Pyl, H. Vrielinck, F.
Callens, G.B. Marin, C. Detavernier, P.V. Wiper, Y.Z. Khimyak, M. Waroquier, V.
Van Speybroeck, P. Van der Voort, Journal of Catalysis 285 (2012) 196–207.
[25] Y.Y. Liu, K. Leus, M. Grzywa, D. Weinberger, K. Strubbe, H. Vrielinck, R. Van
Deun, D. Volkmer, V. Van Speybroeck, P. Van der Voort, European Journal of
Inorganic Chemistry 16 (2012) 2819–2827.
[26] I. Muylaert, J. Musschoot, K. Leus, J. Dendooven, C. Detavernier, P. Van der Voort,
European Journal of Inorganic Chemistry (2) (2012) 251–260.
[27] S. Stoll, A. Schweiger, Journal of Magnetic Resonance 178 (2006) 42–55.
[28] M.J.T. Frisch, G.W. Schlegel, H.B. Scuseria, G.E. Robb, M.A. Cheeseman, J.R. Scal-
mani, G. Barone, V. Mennucci, B. Petersson, G.A. Nakatsuji, H. Caricato, M. Li,
X. Hratchian, H.P. Izmaylov, A.F. Bloino, J. Zheng, G. Sonnenberg, J.L. Hada, M.
Ehara, M. Toyota, K. Fukuda, R. Hasegawa, J. Ishida, M. Nakajima, T. Honda,
Y. Kitao, O. Nakai, H. Vreven, T. Montgomery Jr., J.A. Peralta, J.E. Ogliaro, F.
Bearpark, M. Heyd, J.J. Brothers, E. Kudin, K.N. Staroverov, V.N. Kobayashi, R.
Normand, J. Raghavachari, K. Rendell, A. Burant, J.C. Iyengar, S.S. Tomasi, J.
Cossi, M. Rega, N. Millam, N.J. Klene, M. Knox, J.E. Cross, J.B. Bakken, V. Adamo,
C. Jaramillo, J. Gomperts, R. Stratmann, R.E. Yazyev, O. Austin, A.J. Cammi, R.
Pomelli, C. Ochterski, J.W. Martin, R.L. Morokuma, K. Zakrzewski, V.G. Voth,
G.A. Salvador, P. Dannenberg, J.J. Dapprich, S. Daniels, A.D. Farkas, O. Foresman,
J.B. Ortiz, J.V. Cioslowski, J. Fox, D.J. Gaussian 09, {R}evision {A}. 02, Gaussian,
Inc., Wallingford CT, 2009.
K.L. is grateful to the Long Term Structural Methusalem Grant
No. 01M00409 funding by the Flemish Government. Furthermore,
this research is co-funded by Ghent University, GOA Grant No.
01G00710, the Research Foundation Flanders (FWO-Vlaanderen)
through Grant No. G.0700.08, BELSPO in the frame of IAP 6/27 and
the European Research Council (FP7(2007–2013) ERC Grant No.
240483). Computational resources (Stevin Supercomputer Infra-
structure) and services were provided by Ghent University. The
authors would like to thank the research group FQM-346 and the
SCAI from the University of Córdoba (Spain) for the 13C CP/MAS
NMR measurements. The NMRSTR research group of Ghent Univer-
sity is acknowledged for performing the 1H NMR measurements.
Appendix A. Supplementary data
Supplementary data associated with this article can be
References
[29] A.D. Becke, Journal of Chemical Physics 98 (1993) 5648–5652.
[30] C.T. Lee, W.T. Yang, R.G. Parr, Physical Review B 37 (1988) 785–789.
31 J.P. Merrick, D. Moran, L. Radom, Journal of Physical Chemistry A 111 (2007)
11683–11700.
32 E. Pretsch, P. Bühlmann, C. Affolter, A. Herrera, R. Martínez, Determinaci on
estructural de compuestos org anicos, Elsevier Masson (2001).
[33] J. Coates (Ed.), Interpretation of Infrared Spectra, A Practical Approach, 2000.
[34] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G.
Ferey, Chemistry – A European Journal 10 (2004) 1373–1382.
[35] J. Gascon, U. Aktay, M.D. Hernandez-Alonso, G.P.M. van Klink, F. Kapteijn, Jour-
nal of Catalysis 261 (2009) 75–87.
[1] J.R. Li, J. Sculley, H.C. Zhou, Chemical Reviews 112 (2012) 869–932.
[2] J. Sculley, D.Q. Yuan, H.C. Zhou, Energy and Environmental Science 4 (2011)
2721–2735.
[3] J.R. Li, Y.G. Ma, M.C. McCarthy, J. Sculley, J.M. Yu, H.K. Jeong, P.B. Balbuena, H.C.
Zhou, Coordination Chemistry Reviews 255 (2011) 1791–1823.
[4] D. Farrusseng, S. Aguado, C. Pinel, Angewandte Chemie International Edition
48 (2009) 7502–7513.
[5] J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Chemical Society
Reviews 38 (2009) 1450–1459.
[6] Y. Liu, W.M. Xuan, Y. Cui, Advanced Materials 22 (2010) 4112–4135.
[7] A. Corma, H. Garcia, F.X.L. Xamena, Chemical Reviews 110 (2010) 4606–4655.
Please cite this article in press as: K. Leus, et al., Ti-functionalized NH2-MIL-47: An effective and stable epoxidation catalyst, Catal. Today (2012),