Page 9 of 11
Analytical Chemistry
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
(15) Kim, Y.; Jang, G.; Lee, T. S. New Fluorescent Metal-Ion
(34) Chan, Y.-H.; Wu, P.-J. Semiconducting Polymer Nanoparticles
Detection Using a Paper-Based Sensor Strip Containing Tethered
Rhodamine Carbon Nanodots. ACS Appl. Mater. Interfaces 2015, 7,
as Fluorescent Probes for Biological Imaging and Sensing. Part. Part.
Syst. Charact. 2015, 32, 11-28.
1
5649-15657.
(35) Li, S.; Wang, X.; Hu, R.; Chen, H.; Li, M.; Wang, J.; Wang, Y.;
Liu, L.; Lv, F.; Liang, X.-J.; Wang, S. Near-Infrared (NIR)-Absorbing
Conjugated Polymer Dots as Highly Effective Photothermal Materials
for In Vivo Cancer Therapy. Chem. Mater. 2016, 28, 8669-8675.
(36) Lyu, Y.; Xie, C.; Chechetka, S. A.; Miyako, E.; Pu, K.
Semiconducting Polymer Nanobioconjugates for Targeted
Photothermal Activation of Neurons. J. Am. Chem. Soc. 2016, 138,
9049-9052.
(37) Liu, H.-Y.; Wu, P.-J.; Kuo, S.-Y.; Chen, C.-P.; Chang, E.-H.; Wu,
C.-Y.; Chan, Y.-H. Quinoxaline-Based Polymer Dots with Ultrabright
Red to Near-Infrared Fluorescence for In Vivo Biological Imaging. J.
Am. Chem. Soc. 2015, 137, 10420-10429.
(38) Ke, C.-S.; Fang, C.-C.; Yan, J.-Y.; Tseng, P.-J.; Pyle, J. R.; Chen,
C.-P.; Lin, S.-Y.; Chen, J.; Zhang, X.; Chan, Y.-H. Molecular
Engineering and Design of Semiconducting Polymer Dots with
Narrow-Band, Near-Infrared Emission for in Vivo Biological Imaging.
ACS Nano 2017, 11, 3166-3177.
(39) Feng, L.; Zhu, C.; Yuan, H.; Liu, L.; Lv, F.; Wang, S.
Conjugated Polymer Nanoparticles: Preparation, Properties,
Functionalization and Biological Applications. Chem. Soc. Rev. 2013,
42, 6620-6633.
(40) Lyu, Y.; Zhen, X.; Miao, Y.; Pu, K. Reaction-Based
Semiconducting Polymer Nanoprobes for Photoacoustic Imaging of
Protein Sulfenic Acids. ACS Nano 2017, 11, 358-367.
(41) Lyu, Y.; Fang, Y.; Miao, Q.; Zhen, X.; Ding, D.; Pu, K.
Intraparticle Molecular Orbital Engineering of Semiconducting
Polymer Nanoparticles as Amplified Theranostics for in Vivo
Photoacoustic Imaging and Photothermal Therapy. ACS Nano 2016,
10, 4472.
(42) Sun, K.; Tang, Y.; Li, Q.; Yin, S.; Qin, W.; Yu, J.; Chiu, D. T.;
Liu, Y.; Yuan, Z.; Zhang, X.; Wu, C. In Vivo Dynamic Monitoring of
Small Molecules with Implantable Polymer-Dot Transducer. ACS
Nano 2016, 10, 6769-6781.
(43) Chen, X.; Li, R.; Liu, Z.; Sun, K.; Sun, Z.; Chen, D.; Xu, G.; Xi,
P.; Wu, C.; Sun, Y. Small Photoblinking Semiconductor Polymer
Dots for Fluorescence Nanoscopy. Adv. Mater. 2017, 29, 1604859.
(44) Tsai, W. K.; Chan, Y. H. Semiconducting Polymer Dots as Near-
Infrared Fluorescent Probes for Bioimaging and Sensing. J. Chin.
Chem. Soc. 2019, 66, 9-20.
(45) Jiang, Y.; Pu, K. Multimodal Biophotonics of Semiconducting
Polymer Nanoparticles. Acc. Chem. Res. 2018, 51, 1840-1849.
(46) Zhen, X.; Xie, C.; Pu, K. Temperature-Correlated Afterglow of a
Semiconducting Polymer Nanococktail for Imaging-Guided
Photothermal Therapy. Angew.Chem. Int. Ed. 2018, 57, 3938-3942.
(47) Jiang, Y.; McNeill, J. Light-Harvesting and Amplified Energy
Transfer in Conjugated Polymer Nanoparticles. Chem. Rev. 2017, 117,
838-859.
(48) Miao, Q.; Xie, C.; Zhen, X.; Lyu, Y.; Duan, H.; Liu, X.; Jokerst,
J. V.; Pu, K. Molecular Afterglow Imaging with Bright,
Biodegradable Polymer Nanoparticles. Nat. Biotechnol. 2017, 35,
1102-1110.
(49) Li, J.; Huang, J.; Lyu, Y.; Huang, J.; Jiang, Y.; Xie, C.; Pu, K.
Photoactivatable Organic Semiconducting Pro-nanoenzymes. J. Am.
Chem. Soc. 2019, 141, 4073-4079.
(50) Singh, A.; Bezuidenhout, M.; Walsh, N.; Beirne, J.; Felletti, R.;
Wang, S.; Fitzgerald, K. T.; Gallagher, W. M.; Kiely, P.; Redmond, G.
Functionalization of Emissive Conjugated Polymer Nanoparticles by
Coprecipitation: Consequences for Particle Photophysics and
Colloidal Properties. Nanotechnol. 2016, 27, 305603.
(16) Zhao, Y.; Liu, X.; Wang, X.; Sun, C.; Wang, X.; Zhang, P.; Qiu,
J.; Yang, R.; Zhou, L. Development and Evaluation of an Up-
Converting Phosphor Technology-Based Lateral Flow Assay for
Rapid and Quantitative Detection of Aflatoxin B1 in Crops. Talanta
2
016, 161 (297-303).
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(17) Liu, X.; Zhao, Y.; Sun, C.; Wang, X.; Wang, X.; Zhang, P.; Qiu,
J.; Yang, R.; Zhou, L. Rapid Detection of Abrin in Foods with an Up-
Converting Phosphor Technology-Based Lateral Flow Assay. Sci. Rep.
2
016, 6, 34926.
(18) Ren, M.; Xu, H.; Huang, X.; Kuang, M.; Xiong, Y.; Xu, H.; Xu,
Y.; Chen, H.; Wang, A. Immunochromatographic Assay for
Ultrasensitive Detection of Aflatoxin B1 in Maize by Highly
Luminescent Quantum Dot Beads. ACS Appl. Mater. Interfaces 2014,
6
, 14215-14222.
(19) Huang, X.; Aguilar, Z. P.; Li, H.; Lai, W.; Wei, H.; Xu, H.;
Xiong, Y. Fluorescent Ru(phen)32+-Doped Silica Nanoparticles-
Based ICTS Sensor for Quantitative Detection of Enrofloxacin
Residues in Chicken Meat. Anal. Chem. 2013, 85, 5120-5128.
(20) Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H.
Quantum Dot Bioconjugates for Imaging, Labelling and Sensing. Nat.
Mater. 2005, 4, 435-446.
(
21) Somers, R. C.; Bawendi, M. G.; Nocera, D. G. CdSe Nanocrystal
Based Chem-/Bio-Sensors. Chem. Soc. Rev. 2007, 36, 579-591.
22) Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose,
(
S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S.
Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics.
Science 2005, 307, 538-544.
(
23) Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the
Cytotoxicity of Semiconductor Quantum Dots. Nano Lett. 2004, 4,
1-18.
1
(24) Brunetti, V.; Chibli, H.; Fiammengo, R.; Galeone, A.; Malvindi,
M. A.; Vecchio, G.; Cingolani, R.; Nadeau, J. L.; Pompa, P. P.
InP/ZnS as a Safer Alternative to CdSe/ZnS Core/Shell Quantum
Dots: In Vitro and In Vivo Toxicity Assessment. Nanoscale 2013, 5,
307-317.
(25) Tsoi, K. M.; Dai, Q.; Alman, B. A.; Chan, W. C. W. Are
Quantum Dots Toxic? Exploring the Discrepancy Between Cell
Culture and Animal Studies. Acc. Chem. Res. 2013, 46, 662-671.
(26) Chan, Y.-H.; Chen, J.; Liu, Q.; Wark, S. E.; Son, D. H.; Batteas,
J. D. Ultrasensitive Copper(II) Detection Using Plasmon-Enhanced
and Photo-Brightened Luminescence of CdSe Quantum Dots. Anal.
Chem. 2010, 82, 3671-3678.
(27) You, P.-Y.; Li, F.-C.; Liu, M.-H.; Chan, Y.-H. Colorimetric and
Fluorescent Dual-Mode Immunoassay Based on Plasmon-Enhanced
Fluorescence of Polymer Dots for Detection of PSA in Whole Blood.
ACS Appl. Mater. Interfaces 2019, 11, 9841-9849.
(28) Fang, C.-C.; Chou, C.-C.; Yang, Y.-Q.; Wei-Kai, T.; Wang, Y.-
T.; Chan, Y.-H. Multiplexed Detection of Tumor Markers with
Multicolor Polymer Dot-Based Immunochromatography Test Strip.
Anal. Chem. 2018, 90, 2134-2140.
(29) Pu, K.; Shuhendler, A. J.; Jokerst, J. V.; Mei, J.; Gambhir, S. S.;
Bao, Z.; Rao, J. Semiconducting Polymer Nanoparticles as
Photoacoustic Molecular Imaging Probes in Living Mice. Nat.
Nanotechnol. 2014, 9, 233-239.
(30) Pu, K.; Chattopadhyay, N.; Rao, J. Recent Advances of
Semiconducting Polymer Nanoparticles in In Vivo Molecular
Imaging. J. Control. Release 2016, 240, 312.
(31) Lim, X. The Nanolight Revolution is Coming. Nature 2016, 531,
26-28.
(51) Zhang, X.; Yu, J.; Wu, C.; Jin, Y.; Rong, Y.; Ye, F.; Chiu, D. T.
Importance of Having Low-Density Functional Groups for Generating
High-Performance Semiconducting Polymer Dots. ACS Nano 2012, 6,
5429-5439.
(52) Wei, L.; Zhang, D.; Zheng, X.; Zeng, X.; Zeng, Y.; Shi, X.; Su,
X.; Xiao, L. Fabrication of Positively Charged Fluorescent Polymer
Nanoparticles for Cell Imaging and Gene Delivery. Nanotheranostics
2018, 2, 157-167.
(32) Wu, C.; Bull, B.; Szymanski, C.; Christensen, K.; McNeill, J.
Multicolor Conjugated Polymer Dots for Biological Fluorescence
Imaging. ACS Nano 2008, 2, 2415-2423.
(33) Wu, C.; Hansen, S. J.; Hou, Q.; Yu, J.; Zeigler, M.; Jin, Y.;
Burnham, D. R.; McNeill, J. D.; Olson, J. M.; Chiu, D. T. Design of
Highly Emissive Polymer Dot Bioconjugates for In Vivo Tumor
Targeting. Angew. Chem. Int. Ed. 2011, 50, 3430-3434.
9
ACS Paragon Plus Environment