RSC Advances
Paper
ꢀ
A
efficiency, which is given by L ¼ 1 ꢀ 10 (“A” is the absorbance
8 (a) J. P. Belair, C. J. Ziegler, C. S. Rajesh and D. A. Modarelli, J.
Phys. Chem. A, 2002, 106, 6445; (b) P. C. Lo, J. D. Huang,
D. Y. Y. Cheng, E. Y. M. Chan, W. P. Fong, W. H. Ko and
D. K. P. Ng, Chem.–Eur. J., 2004, 10, 4831; (c) A. Karotki,
M. Khurana, J. R. Lepock and B. C. Wilson, Photochem.
Photobiol., 2006, 82, 443; (d) L. Delanaye, M. A. Bahri,
F. Tbel, M.-P. Fontaine-Aupart, A. Mouithys-Mickalad,
B. Heine, J. Piette and M. Hoebeke, Photochem. Photobiol.
Sci., 2006, 5, 317; (e) M. Morone, L. Beverina, A. Abbotto,
F. Silvestri, E. Collini, C. Ferrante, R. Bozio and
G. A. Pagani, Org. Lett., 2006, 8, 2719; (f) M. Khurana,
H. A. Collins, A. Karotki, H. L. Anderson, D. T. Cramb and
B. C. Wilson, Photochem. Photobiol., 2007, 84, 1441.
at the photoirradiation wavelength).
Photosensitizing ability
Photosensitizing ability of CPD, C603CPD and H2PyP in
CH
2
Cl
2
/MeOH was evaluated by plotting the ln(C
t 0
/C ) against
the photoirradiation time, where C
t
is a concentration of 1,5-
dihydroxynaphthalene (DHN) at the reaction time (t) and C0
is the initial concentration of DHN before photoirradiation.
CH Cl /MeOH was bubbled with air for 15 min. The air-
2
2
saturated solution containing the photosensitizer (2.5 ꢁ
ꢀ
6
ꢀ6
ꢀ4
1
2
0
M for CPD and C603CPD, 5.0 ꢁ 10 M for H2PyP and
ꢀ6
.5 ꢁ 10 M for RB) and DHN (1.0 ꢁ 10 M) was irradiated
9
(a) A. P. Thomas, P. S. S. Babu, S. A. Nair, S. Ramakrishnan,
D. Ramaiah, T. K. Chandrashekar, A. Srinivasan and
M. R. Pillai, J. Med. Chem., 2012, 55, 5110; (b) K. Hirakawa,
Y. Nishimura, T. Arai and S. Okazaki, J. Phys. Chem. B,
ꢀ2
with visible light (>385 nm, 30 mW cm ) obtained by
passage of xenon light through a 385 nm long path lter. The
photooxidation of DHN with the photoirradiation was
monitored by following the decrease in the photoabsorption
at around 300 nm with an interval of 1 min up to 10 min and
2013, 117, 13490; (c) H. Horiuchi, M. Hosaka, H. Mashio,
M. Terata, S. Ishida, S. Kyushin, T. Okutsu, T. Takeuchi
and H. Hiratsuka, Chem.–Eur. J., 2014, 20, 6054; (d) Q. Yu,
E. M. Rodriguez, R. Naccache, P. Forgione, G. Lamoureux,
F. Sanz-Rodriguez, D. Scheglman and J. A. Capobianco,
Chem. Commun., 2014, 50, 12150; (e) D. Yao, V. Hugues,
M. Blanchard-Desce, O. Mongin, C. O. Paul-Roth and
F. Paul, New J. Chem., 2015, 39, 7730.
then an interval of 5 min up to 30 min. The concentration (C
of DHN at the reaction time (t) was calculated based on
/C ) decreased
t
)
Lambert–Beer law (ADPBF ¼ 3cl). The ln(C
t
0
almost linearly with the increase in the photoirradiation time
due to the photooxidation of DHN, that is, the slope was used
to estimate the rate constants (Kobs).
1
0 (a) M. Prein and W. Adam, Angew. Chem., Int. Ed., 2014, 53,
1
2
O detection by EPR spin-trapping method with 4-oxo-TEMP
6938; (b) H. Shinmori, F. Kodaira, S. Matsugo, S. Kawabata
The EPR spectra were recorded on a JEOL JES-RE1X spectrom-
eter under the following experimental conditions: temperature
and A. Osuka, Chem. Lett., 2005, 34, 322; (c) L. G. Arnaut,
M. M. Pereira, J. M. D ˛a browski, E. F. F. Silva,
F. A. Schaberle, A. R. Abreu, L. B. Rocha, M. M. Barsan,
K. Urba n´ ska, G. Stoche and C. M. A. Brett, Chem.–Eur. J.,
2014, 20, 5346; (d) F. Hammerer, G. Garcia, S. Chen,
298 K, microwave power 1 mW, microwave frequency 9.439
GHz, and eld modulation 0.2 mT at 100 kHz. The air-saturated
ꢀ
6
CH Cl solution containing CPD (2.5 ꢁ 10 M), C 3CPD (2.5
2
2
6
60
ꢀ
ꢀ6
ꢁ
10 M) or H2PyP (5.0 ꢁ 10 M) as the photosensitizer and
F.
Royer,
S.
Achelle,
C.
Fiorini-Debuisschert,
4
-oxo-TEMP (50 mM) as the spin-trapping agent was irradiated
M.-P. Telulade-Fichou and P. Maillard, J. Org. Chem., 2014,
79, 1406; (e) J. Schmitt, V. Heitz, A. Sour, F. Bolze,
H. Ftouni, J.-F. Nicoud, L. Flamigni and B. Ventura, Angew.
Chem., Int. Ed., 2015, 54, 169.
ꢀ2
with visible light (>385 nm, 30 mW cm for 1 h) obtained by
passage of xenon light through a 385 nm long path lter. The
ESR spectrum of 4-oxo-TEMPO which is formed by the reaction
1
of 4-oxo-TEMP with O
2
, was clearly observed as a characteristic 11 M. E. Milanesio, M. G. Alvarez, V. Rivarola, J. J. Silber and
1
: 1 : 1 triplet (Fig. 7).
E. N. Durantini, Photochem. Photobiol., 2005, 81, 891.
12 (a) L. Huang, X. Yu, W. Wu and J. Zhao, Org. Lett., 2012, 14,
2
594; (b) A. Kamkaew, S. H. Lim, H. B. Lee, L. V. Kiew,
Notes and references
L. Y. Chung and K. Burgess, Chem. Soc. Rev., 2013, 42, 77;
(c) L. Huang, X. Cui, B. Therrien and J. Zhao, Chem.–Eur. J.,
2013, 19, 17472.
1
2
3
4
5
6
7
J. F. Lovell, T. W. B. Liu, J. Chen and G. Zheng, Chem. Rev.,
010, 110, 2839.
2
M. C. DeRosa and R. J. Crutchley, Coord. Chem. Rev., 2002, 13 (a) H. Nobukuni, Y. Shimazaki, H. Uno, Y. Naruta, K. Okubo,
233–234, 351.
T. Kojima, S. Fukuzumi, S. Seki, H. Sakai, T. Hasobe and
F. Tani, Chem.–Eur. J., 2010, 16, 11611; (b) H. Nobukuni,
T. Kamimura, H. Uno, Y. Shimazaki, Y. Naruta and
F. Tani, Bull. Chem. Soc. Jpn., 2012, 85, 862; (c)
K. Sakaguchi, T. Kamimura, H. Uno, S. Mori, S. Ozako,
H. Nobukuni, M. Ishida and F. Tani, J. Org. Chem., 2014,
79, 2980; (d) T. Kamimura, K. Ohkubo, Y. Kawashima,
H. Nobukuni, Y. Naruta, F. Tani and S. Fukuzumi, Chem.
Sci., 2013, 4, 1451; (e) T. Kamimura, K. Ohkubo,
Y. Kawashima, S. Ozako, K. Sakaguchi, S. Fukuzumi and
F. Tani, J. Phys. Chem. C, 2015, 119, 25634; (f) Y. Ooyama,
M. Pawlicki, H. A. Collins, R. G. Denning and H. L. Anderson,
Angew. Chem., Int. Ed., 2009, 48, 3244.
K. A. Leonard, M. I. Nelen, L. T. Anderson, S. L. Gibson,
R. Hilf and M. R. Detty, J. Med. Chem., 1999, 42, 3942.
J. M. D ˛a browski and L. G. Arnaut, Photochem. Photobiol. Sci.,
2
015, 14, 1765.
T. Patrice, Photodynamic Therapy, Royal Society of Chemistry,
003.
2
(a) R. Bonnett, Chem. Soc. Rev., 1995, 24, 19; (b) M. Ethirajan,
Y. Chen, P. Joshi and R. K. Pandey, Chem. Soc. Rev., 2011, 40,
340.
18694 | RSC Adv., 2017, 7, 18690–18695
This journal is © The Royal Society of Chemistry 2017