C. Ferroud et al. / Tetrahedron Letters 49 (2008) 5972–5975
5975
Table 2
5. (a) Glogard, C.; Stensrud, G.; Hovland, R.; Fossheim, S. L.; Klaveness, J. Int. J.
Pharm. 2002, 233, 131–140; (b) Masotti, A.; Mangiola, A.; Sabatino, G.; Maira,
G.; Denaro, L.; Conti, F.; Ortaggi, G.; Capuani, G. Int. J. Immunopathol. Pharmacol.
2006, 19, 379–390.
Comparison of r1-relaxivities measured at 20 MHz for various amphiphilic Gd
complexes
Gd complexes
r1-relaxivities
6. (a) Glogard, C.; Hovland, R.; Fossheim, S. L.; Aasen, A. J.; Klaveness, J. J. Chem.
Soc., Perkin Trans. 2 2000, 1047; (b) Hovland, R.; Glogard, C.; Aasen, A. J.;
Klaveness, J. J. Chem. Soc., Perkin Trans. 2 2001, 929–933; (c) Muller, R. N.;
Vander Elst, L.; Roch, A.; Peters, J. A.; Csajbok, E.; Gillis, P.; Gossuin, Y. Advances
in Inorganic Chemistry, Elsevier Ed., Oxford, 2005, Vol 57, pp 239-289; (d)
Masotti, A.; Remollino, L.; Carafa, M.; Marianecci, C.; Santucci, E.; Ortaggi, G.
Synlett 2006, 2815–2817; (e) Nicolle, G. M.; Toth, E.; Eisenwiener, K-P.; Mäcke,
H. R.; Merbach, A. E. J. Biol. Inorg. Chem. 2002, 7, 757–769.
7. (a) Siaugue, J. M.; Segat-Dioury, F.; Favre-Réguillon, A.; Madic, C.; Foos, J.; Guy,
A. Tetrahedron Lett. 2000, 41, 7443–7446; (b) Siaugue, J. M.; Segat-Dioury, F.;
Sylvestre, I.; Favre-Réguillon, A.; Foos, J.; Madic, C.; Guy, A. Tetrahedron 2001,
57, 4713–4718.
(mMÀ1 sÀ1), 37 °C
Gd(PCTA–CH2CONH–C12) 3
Gd(PCTA–O–C12)10a
33
28.5
18.8
Gd(DOTA–C14)6a
Gd(DTPA–CONH–C12) andGd(DTPA–CONH–C14)
andGd(DTPA–CONH–C16) andGd(DTPA–
CONH–C18)15
<15 from NMRD profiles
Gd(DTPA–bisCONH–C14) andGd(DTPA–
<14 from NMRD profiles
<10 from NMRD profile
bisCONH–C16)16
Gd(DTPA–bisCONH–C18)16
8. (a) Dioury, F.; Guéné, E.; Di Scala-Roulleau, A.; Ferroud, C.; Guy, A.; Port, M.
Tetrahedron Lett. 2005, 46, 611–613; (b) Dioury, F.; Sambou, S.; Guéné, E.;
Sabatou, M.; Ferroud, C.; Guy, A.; Port, M. Tetrahedron 2007, 63, 204–214.
9. Aime, S.; Botta, M.; Frullano, L.; Crich, S. G.; Giovenzana, G. B.; Pagliarin, R.;
Palmisano, G.; Sisti, M. Chem. Eur. J. 1999, 5, 1253–1260.
10. (a) Hovland, R.; Glogard, C.; Aasen, A. J.; Klaveness, J. Org. Biomol. Chem. 2003, 1,
644–647; (b) Miller, S. C.; Scanlan, T. S. J. Am. Chem. Soc. 1997, 119, 2301–2302.
11. Huang, P.-Q.; Zheng, X.; Deng, X.-M. Tetrahedron Lett. 2001, 42, 9039–9041.
12. Basha, A.; Lipton, M.; Weinreb, S. M. Tetrahedron Lett. 1977, 18, 4171–4172.
13. (a) Sidler, D. R.; Lovelace, T. C.; McNamara, J. M.; Reider, P. J. J. Org. Chem. 1994,
59, 1231–1233; (b) Alvarez-Ibarra, C.; G Csákÿ, A.; Gómez de la Oliva, O.;
Rodrıguez, E. Tetrahedron Lett. 2001, 42, 2129–2131.
the secondary amide function of the lipophilic side arm that can
form hydrogen bonds between monomers, resulting in more rigid-
ified micelles. This would be responsible for enhancement of the
local rotational correlation time and for an increased relaxivity of
the new Gd complex.
In conclusion, the amphiphilic GdPCTA-[12] derivative 3 was
synthesized in nine steps from commercially available diethylene
triamine 4 and 3-hydroxypyridine 8 in 22% overall yield. In
comparison, Hovland et al.10a have described the synthesis of a
derivative, bearing a dodecylamine chain directly connected to
the aromatic hydroxyl on the pyridine, in six steps from two
commercially unavailable compounds in 3% overall yield.
The physicochemical properties of compound 3 are being
further investigated, and will be published shortly.
14. Analytical data for all compounds: Compound 5: 1H NMR (400 MHz, DMSO-d6):
d 2.52 (t, J = 6.5 Hz, 4H), 2.92 (t, J = 6.5 Hz, 4H), 7.86–7.91 (m, 4H), 7.97–8.00
(m, 2 H), 8.00–8.07 (m, 2H); 13C (100 MHz, DMSO-d6): d 42.6, 47.8, 124.4,
129.5, 132.6, 132.7, 134.0, 147.7. Compound 6: 1H NMR (400 MHz, CDCl3): d
1.34 (s, 18H), 1.44 (s, 9H), 2.86 and 3.45 (2 Â t, J = 6.8 Hz, 8H), 3.24 (s, 2H), 4.15
(s, 4H), 7.51–7.61 (m, 2H), 7.62–7.72 (m, 4H), 8.03–8.11 (m, 2H); 13C (100 MHz,
CDCl3): d 27.9, 28.2, 46.8, 49.5, 53.2, 56.2, 81.5, 82.3, 124.0, 131.0, 131.9, 133.3,
133.5, 148.0, 167.8, 170.3; HRMS (ES+) calcd for C34H50N5O14S2 + H+, 816.2796;
found, 816.2787. Compound 7: 1H NMR (400 MHz, CDCl3): d 1.39 (s, 9H), 1.41
(s, 18H), 2.61–2.65 (m, 4H), 2.75–2.79 (m, 4H), 3.27 and 3.29 (s, 6H); 13C
(100 MHz, CDCl3):
d 28.1, 47.2, 51.2, 171.0, 171.1, 81.0, 81.3, 53.6, 55.8.
Compound 9: 1H NMR (400 MHz, CDCl3): d 1.23 (t, J = 7.2 Hz, 3H), 4.19 (q,
J = 7.2 Hz, 2H), 4.60, 4.61 and 4.73 (3s, 6H), 7.00 and 7.15 (2d, J = 8.5 Hz, 2H);
13C (100 MHz, CDCl3): d 14.1, 60.2, 61.7, 64.2, 65.5, 168.4, 148.2, 150.0, 151.3,
119.2, 119.9. Compound 10a: 1H NMR (400 MHz, CDCl3): d 1.30 (t, J = 7.2 Hz,
3H), 4.27 (q, J = 7.2 Hz, 2H), 4.52 and 4.67 (2s, 4H), 4.74 (s, 2H), 7.06 and 7.09 (2
d, J = 8.6 Hz, 2H); 13C (100 MHz, CDCl3): d 14.2, 28.8, 33.3, 61.8, 65.8, 120.2,
124.5, 146.7, 149.3, 151.7, 167.9. Compound 11: 1H NMR (400 MHz, CDCl3): d
1.27 (t, J = 7.0 Hz, 3 H), 1.42 (s, 9H), 1.46 (s, 9H), 1.47 (s, 9H), 1.99–2.22 (m, 4H),
2.48–2.67 (m, 4H), 3.11 (2d, J = 17.6 Hz, AB, 2H), 3.32 and 3.36 (2d, J = 3.0 Hz,
AB, 2H), 3.42 and 3.47 (2 d, J = 7.0 Hz, AB, 2H), 3.68 and 3.93 (2d, J = 14.6 Hz,
AB, 2H), 3.74 and 4.13 (2d, J = 15.8 Hz, AB, 2H), 4.21 (q, J = 7.0 Hz, 2H), 4.67 and
4.72 (2d, J = 16.6 Hz, AB, 2H), 7.16 and 7.20 (2d, J = 8.5 Hz, 2H); 13C (100 MHz,
CDCl3): d 13.7, 27.5, 52.7, 53.2, 53.3, 53.5, 55.9, 56.0, 58.9, 59.3, 61.1, 61.0, 65.1,
82.2, 82.37, 82.42, 120.1, 121.8, 147.1, 149.1, 150.6, 167.7, 172.5, 172.6, 173.1;
LRMS (IC) calcd for C33H54N4O9 + Na+, 673; found, 673.47; LRMS (ES+) calcd for
Acknowledgement
Financial support from Laboratoires Guerbet is gratefully
acknowledged.
References and notes
1. (a) Aime, S.; Botta, M.; Fasano, M.; Terreno, E. Chem. Soc. Rev. 1998, 27, 19–29;
(b) Idee, J.-M.; Port, M.; Raynal, I.; Schaefer, M.; Le Greneur, S.; Corot, C. Fund.
Clin. Pharmacol. 2007, 206, 563–576; (c) Port, M.; Idée, J.-M.; Medina, C.; Robic,
2. (a) Toth, E.; Pubanz, D.; Vauthey, S.; Helm, L.; Merbach, A. E. Chem. Eur. J. 1996,
2, 1607–1615; (b) Krause, W.; Hackmann-Schlichter, N.; Maier, F. K.; Muller, R.
N. Top. Curr. Chem. 2000, 210, 261–308.
3. (a) Vexler, V. S.; Clement, O.; Schmitt-Willich, H.; Brasch, R. C. J. Magn. Res.
Imaging 1994, 4, 381–388; (b) Ladd, D. L.; Hollister, R.; Peng, X.; Wie, D.; Wu, G.;
Delecki, D.; Snow, R. A.; Toner, J. L.; Kellar, K.; Eck, J.; Desai, V. C.; Raymond, G.;
Kinter, L. B.; Desser, T. S.; Rubin, D. L. Bioconjugate Chem. 1999, 10, 361–370; (c)
Corsi, D. M.; Vander Elst, L.; Muller, R. N.; van Bekkum, H.; Joop, A. P. Chem Eur.
J. 2001, 7, 64–71.
C
C
33H54N4O9 + H+, 651 found, 651.40. Compound 12: LRMS (IC) calcd for
43H75N5O8 + H+, 790; found, 790.44; LRMS (ES+) calcd for C43H75N5O8 + H+,
790; found, 790.51). Compound 13: LRMS (ES+) calcd for C31H51N5O8 + H+, 622;
found, 622.37. Compound 3: LRMS (ES+) calcd for C31H48GdN5O8 + H+, 776;
found, 776.00.
15. Parac-Vogt, T. N.; Kimpe, K.; Laurent, S.; Pierart, C.; Vander Elst, L.; Muller, R.
N.; Binnemans, K. Eur. J. Inorg. Chem. 2004, 17, 3538–3543.
16. Kimpe, K.; Parac-Vogt, T. N.; Laurent, S.; Pierart, C.; Vander Elst, L.; Muller, R.
N.; Binnemans, K. Eur. J. Inorg. Chem. 2003, 16, 3021–3027.
4. Toth, E.; Connac, F.; Helm, L.; Adzamli, K.; Merbach, A. E. J. Biol. Inorg. Chem.
1998, 3, 606–613.