Angewandte Chemie International Edition
10.1002/anie.201703862
COMMUNICATION
1-ph, a white-emitting device was fabricated as shown in
Key words: carborane • white light • organic luminophore •
Supporting Information. The device presents a pure and bright
white light with CIE coordinates (0.33, 0.36) (Figure 3c). The
aggregation induced emission • hydrogen bonds
4
-2
white-light brightness can reach 1.4 × 10 cd m under a low
operating voltage (4.0 V) (Figure S21), far beyond practical use
[1]
[2]
[3]
a) Y. Sun, N. C. Giebink, H. Kanno, B. W. Ma, M. E. Thompson, S. R.
Forrest, Nature 2006, 440, 908; b) S. Reineke, F. Lindner, G. Schwartz,
N. Seidler, K. Walzer, B. Lüssem, K. Leo, Nature 2009, 459, 234.
a) L. Ying, C. Ho, H. B. Wu, Y. Cao, W. Y. Wong, Adv. Mater. 2014, 26,
3
-2
(
i.e. 1.0 × 10 cd m ). This may provide promising applications
for future lighting.
2459; b) G. J. Zhou, Q. Wang, X. Z. Wang, C. Ho, W. Y. Wong, D. G.
Ma, L. X. Wang, Z. Y. Lin, J. Mater. Chem. 2010, 20, 7472.
a) R. J. Wang, D. Liu, H. Ren, T. Zhang , H. M. Yin, G. Y. Liu, J. Y. Li,
Adv. Mater. 2011, 23, 2823; b) H. Wei, Z. F. Zhao, C. Wei, G. Yu, Z. W.
Liu, B. Zhang, J. Bian, Z. Q. Bian, C. H. Huang, Adv. Funct. Mater.
2
016, 26, 2085; c) Q. Zhang, D. F. Li, X. Li, P. B. White, J. Mecinović, X.
Ma, H. Ågren, R. J. Nolte, H. Tian, J. Am. Chem. Soc. 2016, 138,
3541.
1
[4]
a) Z. L. Xie, C. Chen, S. D. Xu, J. Li, Y. Zhang, S. W. Liu, J. R. Xu, Z. G.
Chi, Angew. Chem. Int. Ed. 2015, 54, 7181; b) Q. Y. Yang, J. M. Lehn,
Angew. Chem. Int. Ed. 2014, 53, 4572; c) G. M. Farinola, R. Ragni,
Chem. Soc. Rev. 2011, 40, 3467.
[
5]
6]
a) J. V. Caspar, T. J. Meyer, J. Phys. Chem. 1983, 87, 952; b) J. V.
Caspar, E. M. Kober, B. P. Sullivan, T. J. Meyer, J. Am. Chem. Soc.
1982, 104 , 630.
[
a) J. Liang, B. Z. Tang, B. Liu, Chem. Soc. Rev. 2015, 44, 2798; b) J.
Mei, Y. N. Hong, J. W. Y. Lam, A. J. Qin, Y. H. Tang, B. Z. Tang, Adv.
Mater. 2014, 26, 5429.
Figure 3. a) The calculated intermolecular interactions for 3-cl and 3-f, green
indicates noncovalent interactions; b) The voids of the unit cells for 3-f and 3-
cl; c) CIE chromaticity coordinates and PL spectrum of the white LED device
from 1-ph, inset: luminescence photographs.
[7]
a) R. N. Grimes, Carboranes, Academic Press, New York, 3nd, 2016;
b) R. E. Williams, Chem. Rev. 1992, 92, 177; c) A. M. Spokoyny, C. W.
Machan, D. J. Clingerman, M. S. Rosen, M. J. Wiester, R. D. Kennedy,
C. L. Stern, A. A. Sarjeant, C. A. Mirkin, Nat. Chem. 2011, 3, 590.
a) N. S. Hosmane, Boron Science: New Technologies and Applications,
CRC Press, Boca Raton, FL, 2011; b) R. Núñez, I. Romero, F. Teixidor,
C. Viñas, Chem. Soc. Rev. 2016, 45, 5147; c) Grimes, R. N. Dalton
Trans. 2015, 44, 5939; d) R. Visbal, I. Ospino, J. M. López-de-
Luzuriaga, A. Laguna, M. C. Gimeno, J. Am. Chem. Soc. 2013, 135,
[8]
In summary, an efficient strategy for highly emissive organic
single-molecule white emitters has been developed in the o-
carborane-based luminophores. Our results demonstrate that
incorporation of o-carborane to phenanthrene can induce CT
emission and lead to high-purity complementary-color white light
in solid state. For the first time, the new-type intermolecular
hydrogen bonds (Bcage−H···π, Ccage−H···π and Ccage−H···F) from
the o-carborane cage were designed to suppress nonradiative
decay to have realized high-efficiency solid-state white-light
emission (φabs up to 67%) for a simple carborane-phenanthrene
conjugate. Such a φabs is the highest among so far reported
organic single-molecule white-emitters in sold state. In view of
the advantages such as easy preparation, pure white light, high
4
712; e) A. M. Prokhorov, T. Hofbeck, R. Czerwieniec, A. F.
Suleymanova, D. N. Kozhevnikov, H. Yersin, J. Am. Chem. Soc. 2014,
36, 9637; f) J. C. Axtell, K. O. Kirlikovali, P. I. Djurovich, D. Jung, V. T.
1
Nguyen, B. Munekiyo, A. T. Royappa, A. L. Rheingold, A. M. Spokoyny,
J. Am. Chem. Soc. 2016, 138, 15758; g) L. Cerdán, J. Braborec, I.
Garcia-Moreno, A. Costela, M. G. S. Londesborough, Nat. Commun.
2015, 6; h) C. Shi, H. Sun, X. Tang, W. Lv, H. Yan, Q. Zhao, J. Wang,
W. Huang, Angew. Chem. Int. Ed. 2013, 52, 13434.
[9]
a) H. Naito, K. Nishino, Y. Morisaki, K. Tanaka, Y. Chujo, Angew.
Chem .Int. Ed. 2017, 56, 254; b) K. R. Wee, Y. J. Cho, J. K. Song, S. O.
Kang, Angew. Chem. Int. Ed. 2013, 52, 9682.
[10] B. P. Dash, R. Satapathy, E. R. Gaillard, K. M. Norton, J. A. Maguire, N.
φabs and thermal stability, the functionalization of organic
Chug, N. S. Hosmane, Inorg. Chem. 2011, 50, 5485.
luminophores with o-carborane may open a new gateway for
high-performance solid-state light-emitting materials and devices.
[11] Y. H. Lee, J. Park, J. Lee, S. U. Lee, M. H. Lee, J. Am. Chem. Soc.
2015, 137, 8018.
[
[
[
12] Y. Okazawa, K. Kondo, M. Akita, M. Yoshizawa, J. Am. Chem. Soc.
2015, 137, 98.
13] J. Q. Tong, Y. J. Wang, Z. Y. Wang, J. Z. Sun, B. Z. Tang, J. Phys.
Chem. C 2015, 119, 21875.
Experimental Section
14] a) J. Gierschner, S. Y. Park, J. Mater. Chem. C 2013, 1, 5818; b) M.
Kasha, H. R. Rawls, M. El-Bayoumi, Pure and Applied Chemistry 1965,
The synthesis of all compounds was shown in Scheme S1. All
experimental details can be found in the Supporting Information.
11, 371.
[
[
[
15] Z. Xie, B. Yang, F. Li, G. Cheng, L. Liu, G. Yang, H. Xu, L. Ye, M. Hanif,
S. Y. Liu, D. G. Ma, Y. G. Ma, J. Am. Chem. Soc. 2005, 127, 14152.
16] X. Zhang, H. Dai, H. Yan, W. Zou, D. Cremer, J. Am. Chem. Soc. 2016,
Acknowledgements
138, 4334.
17] Y. P. Li, F. Li, H. Y. Zhang, Z. Q. Xie, W. J. Xie, H. Xu, B. Li, F. Z. Shen,
The authors are grateful for the financial support from NSFC
L. Ye, M. Hanif, D. G. Ma, Y. G. Ma, Chem. Commun. 2007, 231.
(
21472086 and 21531004) and MOST (2013CB922101).
This article is protected by copyright. All rights reserved.