Communication
ChemComm
We acknowledge financial support by the Spanish Govern-
´
ment (grant RTI2018-099565-B-I00), Junta de Andalucıa
(Research Group RNM-179) and University of Granada, UGR
(Research Excellence Unit UCE-PP2016-05 ‘‘Carbonates’’). We
´
also thank the personnel of the Centro de Instrumentacion
´
Cientıfica, UGR, for their help during TEM and TG/DSC ana-
lyses. MBR acknowledges a doctoral research contract funded
by the Spanish Government (PRE2019-090256).
Conflicts of interest
There are no conflicts to declare.
References
1 (a) T. M. Stawski, A. E. S. Van Driessche, M. Ossorio, J. D. Rodriguez-
Blanco, R. Besselink and L. G. Benning, Nat. Commun., 2016,
7, 11177; (b) A. E. S. Van Driessche, T. M. Stawski and
M. Kellermeier, Chem. Geol., 2019, 530, 119274.
2 B. Tian and M. D. Cohen, Cem. Concr. Res., 2000, 30, 117–123.
3 K. Elert, C. Benavides-Reyes and C. Cardell, Cem. Concr. Compos.,
2019, 96, 274–283.
4 (a) M. A. Rauchsmann, T. A. Wichelhaus, V. Stirnal, E. Dingeldein,
L. Zichner, R. Schnettler and V. Alt, Biomaterials, 2005, 26,
2677–2684; (b) M. Sidqui, P. Collin, C. Vitte and N. Forest, Biomater-
ials, 1995, 16, 1327–1332.
Fig. 4 Hydration kinetics. Time evolution of the fractional conversion (a)
of nanobassanite (red circles/curves) and control (Plaster of Paris,
b-hemihydrate; blue circles/curves) into gypsum following through-
solution (a) and vapor phase (b) hydration. Error bars show standard
deviation. Sharp-Hannock plots for the LP (c) and VP (d) hydration of
(nano)bassanite. The red and blue circles are experimental points for
nanobassanite and b-hemihydrate, respectively. The dashed lines are best
linear fits to such experimental points using the Avrami-Erofe’ev equation
(fitting parameters and R2 values are indicated).
5 R. Butta, C. R. Tredwin, M. Nesbit and D. R. Moles, J. Prosthet. Dent.,
2005, 93, 540–544.
6 Y. Jiang, H. Qin, H. Wan, J. Yang, Q. Yu, M. Jiang and B. Yu, J. Cell.
Mol. Med., 2020, 00, 1–13.
7 D. Freyer and W. Voight, Monatsh. Chem., 2003, 134, 693–719.
8 N. B. Singh and B. Middendorf, Prog. Cryst. Growth Charact. Mater.,
2007, 53, 57–77.
9 (a) H. J. Engert and T. Kolowski, ZKG Int., 1998, 51, 229–237;
(b) B. Guan, G. Jiang, Z. Wu, J. Mao and B. Kong, J. Am. Ceram.
Soc., 2011, 94, 3261–3266.
(R2 Z 0.97) of these results to the Avrami model.26 From this
kinetics analysis (see Methods in ESI†) apparent rate constants (k)
were calculated yielding: (LP) kControl = 1.72 ꢃ 10ꢁ3 sꢁ1 (n = 1.14)
and kNanobass = 2.56 ꢃ 10ꢁ3 sꢁ1 (n = 1.27) (Fig. 4c); (VP)
kControl = 6.21 ꢃ 10ꢁ6 sꢁ1 (n = 1.05) and kNanobass = 9.96 ꢃ 10ꢁ6 sꢁ1
(n = 1.32) (Fig. 4d). These results demonstrate that the hydration of
10 H. Fu, B. Guan and Z. Wu, Fuel, 2015, 150, 602–608.
the synthesized nanobassanite proceeds at a significantly faster rate 11 L. Li, Y. J. Zhu and M. G. Ma, Mater. Lett., 2008, 62, 4552–4554.
12 S. K. Lee, M. K. Lee and H. Lee, J. Electrochem. Soc., 2010, 157, K43–K46.
13 (a) B. Guan, G. Jiang, H. Fu, L. Yang and Z. Wu, Ind. Eng. Chem. Res.,
(with a significantly higher conversion in the case of VP hydration; see
Fig. 4b) than the low-SSA control (standard b-hemihydrate).
2011, 50, 13561–13567; (b) B. Kong, B. Guan, M. Z. Yates and Z. Wu,
In summary, herein we report a novel route for the synthesis of
high SSA, rod-shaped bassanite nanoparticles following a one-pot,
solvothermal route that involves the formation of amorphous
Ca-ethoxide and its transformation into nanobassanite after acid–
base neutralization using concentrated sulfuric acid. The hydration
kinetics study confirmed the exceptionally high reactivity of the
synthesized nanomaterial as compared to a commercial control.
This synthesized product is of special interest for applications in
heritage conservation and for biomedical and pharmaceutical
Langmuir, 2012, 28, 14137–14142; (c) Q. Chen, G. Jiang, C. Jia,
H. Wang and B. Guan, CrystEngComm, 2015, 17, 8549–8554;
(d) P. Tartaj, J. Morales and L. Fernandez-Diaz, Cryst. Growth Des.,
2015, 15, 2809–2816; (e) S. Fukugaichi and N. Matsue, ACS Omega,
2018, 3, 2820–2824; ( f ) C. Hazra, S. Bari, D. Kundu, A. Chaudhari,
S. Mishra and A. Chatterjee, Ultrason. Sonochem., 2014, 21,
1117–1131.
14 Y. W. Wang, Y. Y. Kim, H. K. Christenson and F. C. Meldrum,
Chem. Commun., 2012, 48, 504–506.
15 U. Tritschler, A. E. S. Van Driessche, A. Kempter, M. Kellermeier and
¨
H. Colfen, Angew. Chem., Int. Ed., 2015, 54, 4083–4086.
16 Y. W. Wang and F. C. Meldrum, J. Mater. Chem., 2012, 22, 22055–22062.
purposes.4–6 In particular, by analogy to nanolimes having wide- 17 U. Tritschler, M. Kellermeier, C. Debus, A. Kempter and H. Colfen,
¨
ranging applications in heritage conservation,25 the synthesized
CrystEngComm, 2015, 17, 3772.
18 Q. Chen, C. Jia, Y. Li, J. Xu, B. Guan and M. Z. Yates, Langmuir, 2017,
nanobassanite can be dispersed in ethanol (e.g., 5–10 g Lꢁ1) and
33, 2362–2369.
applied (e.g., by brushing or spraying) as consolidant to decayed 19 Y. B. Park, K. Mohan, A. Al-Sanousi, B. Almaghrabi, R. J. Genco,
M. T. Swihart and R. Dziak, Biomed. Mater., 2011, 6, 055007.
20 K. T. Ranjit and K. J. Klabunde, Chem. Mater., 2005, 17, 65–73.
21 J. Bensted and S. Prakash, Nature, 1968, 219, 60–61.
porous gypsum-based substrates where the nanoparticles can pene-
trate in depth and, following solvent evaporation and VP hydration,
can produce new gypsum cement. This treatment shows great 22 D. A. Powell, Nature, 1958, 182, 792.
23 C. Bezou, A. Nonat, J.-C. Mutin, A. N. Christensen and
potential in the heritage conservation field, responding to the urgent
M. S. Lehmann, J. Solid State Chem., 1995, 117, 165–176.
need of compatible consolidants for degraded historic gypsum
24 K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti,
plasters. Currently we are testing the application of alcohol disper-
sion of nanobassanite (i.e., what we call ‘‘Nanogypsum’’) for the
consolidation of Islamic period (middle age) gypsum plasters at the
Alhambra (Granada, Spain).
J. Rouquerol and T. Siemieniewska, Pure Appl. Chem., 1985, 57, 603–619.
25 C. Rodriguez-Navarro and E. Ruiz-Agudo, Pure Appl. Chem., 2018, 90,
523–550.
26 S. J. Gurgul, G. Seng and G. R. Williams, J. Synchrotron Radiat., 2019,
26, 774–784.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 7304–7307 | 7307