Page 7 of 8
Journal of the American Chemical Society
10.
Wang, Z.; Udmark, J.; Börjesson, K.; Rodrigues, R.; Roffey,
30.
Asano, T.; Okada, T. Thermal Z‐E Isomerization of Azoben‐
A.; Abrahamsson, M.; Nielsen, M. B.; Moth‐Poulsen, K. Evaluating Di‐
hydroazulene/Vinylheptafulvene Photoswitches for Solar Energy
Storage Applications. ChemSusChem 2017, 10, 3049‐3055.
zenes. The Pressure, Solvent, and Substituent Effects. J. Org. Chem.
1984, 49, 4387‐4391.
1
2
3
4
5
6
7
8
31.
Different Classes of Azobenzene. Chem. Soc. Rev. 2012, 41, 1809‐1825.
32. Weston, C. E.; Richardson, R. D.; Haycock, P. R.; White, A.
Bandara, H. M. D.; Burdette, S. C. Photoisomerization in
11.
Mogensen, J.; Christensen, O.; Kilde, M. D.; Abildgaard, M.;
Metz, L.; Kadziola, A.; Jevric, M.; Mikkelsen, K. V.; Nielsen, M. B. Mo‐
lecular Solar Thermal Energy Storage Systems with Long Discharge
Times Based on the Dihydroazulene/Vinylheptafulvene Couple. Eur.
J. Org. Chem. 2019, 2019, 1986‐1993.
J. P.; Fuchter, M. J. Arylazopyrazoles: Azoheteroarene Photoswitches
Offering Quantitative Isomerization and Long Thermal Half‐Lives. J.
Am. Chem. Soc. 2014, 136, 11878‐11881.
12.
Moth‐Poulsen, K.; Ćoso, D.; Börjesson, K.; Vinokurov, N.;
33.
Calbo, J.; Thawani, A. R.; Gibson, R. S. L.; White, A. J. P.;
Meier, S. K.; Majumdar, A.; Vollhardt, K. P. C.; Segalman, R. A. Molec‐
ular Solar Thermal (MOST) Energy Storage and Release System. En‐
erg. Environ. Sci. 2012, 5, 8534‐8537.
Fuchter, M. J. A Combinatorial Approach to Improving the Perfor‐
mance of Azoarene Photoswitches. Beilstein J. Org. Chem. 2019, 15,
2753‐2764.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
13.
Börjesson, K.; Dzebo, D.; Albinsson, B.; Moth‐Poulsen, K.
34.
Calbo, J.; Weston, C. E.; White, A. J. P.; Rzepa, H. S.; Con‐
Photon Upconversion Facilitated Molecular Solar Energy Storage. J.
Mater. Chem. A 2013, 1, 8521‐8524.
14.
Poulsen, K. Tuning the Photochemical Properties of the Fulvalene‐
tetracarbonyl‐diruthenium System. Dalton Trans. 2016, 45, 8740‐
8744.
treras‐García, J.; Fuchter, M. J. Tuning Azoheteroarene Photoswitch
Performance through Heteroaryl Design. J. Am. Chem. Soc. 2017, 139,
1261‐1274.
Lennartson, A.; Lundin, A.; Börjesson, K.; Gray, V.; Moth‐
35.
Gibson, R. S. L.; Calbo, J.; Fuchter, M. J. Chemical Z−E Iso‐
mer Switching of Arylazopyrazoles Using Acid. ChemPhotoChem
2019, 3, 372‐377.
36.
ylazophenyl Ether‐Based Photoswitches: Facile Synthesis, (Near‐
)Quantitative Photoconversion, Long Thermal Half‐Life, Easy Func‐
tionalization, and Versatile Applications in Light‐Responsive Systems.
Chem. Eur. J. 2019, 25, 13402‐13410.
15.
Neumann, O.; Urbam, A. S.; Day, J.; Lal, S.; Nordlander, P.;
Zhang, Z. Y.; He, Y.; Zhou, Y.; Yu, C.; Han, L.; Li, T. Pyrazol‐
Halas, N. J. Solar Vapor Generation Enabled by Nanoparticles. ACS
Nano 2013, 7, 42‐49.
16.
Metal‐Catalyzed Functionalization of Azobenzenes. ACS Catal. 2018,
8, 1546‐1579.
17.
molecular materials. Chem. Soc. Rev. 2011, 40, 3835‐3853.
18. Dong, L.; Feng, Y.; Wang, L.; Feng, W. Azobenzene‐based
Solar Thermal Fuels: Design, Properties, and Applications. Chem. Soc.
Rev. 2018, 47, 7339‐7368.
19.
Devices: Composites of Fabric and a Photoliquefiable Azobenzene De‐
rivative. Adv. Energy Mater. 2019, 9, 1901363.
20.
Nguyen, T. H. L.; Gigant, N.; Joseph, D. Advances in Direct
37.
Zhang, Y.‐M.; Zhang, N.‐Y.; Xiao, K.; Yu, Q.; Liu, Y. Photo‐
Merino, E. Synthesis of azobenzenes: the coloured pieces of
Controlled Reversible Microtubule Assembly Mediated by Paclitaxel‐
Modified Cyclodextrin. Angew. Chem., Int. Ed. 2018, 57, 8649‐8653.
38.
M. Temporal and Reversible Control of a DNAzyme by Orthogonal
Photoswitching. J. Am. Chem. Soc. 2018, 140, 16868‐16872.
Haydell, M. W.; Centola, M.; Adam, V.; Valero, J.; Famulok,
Hu, J.; Huang, S.; Yu, M.; Yu, H. Flexible Solar Thermal Fuel
39.
Stricker, L.; Fritz, E.‐C.; Peterlechner, M.; Doltsinis, N. L.;
Ravoo, B. J. Arylazopyrazoles as Light‐Responsive Molecular Switches
in Cyclodextrin‐Based Supramolecular Systems. J. Am. Chem. Soc.
2016, 138, 4547‐4554.
Kunz, A.; Heindl, A. H.; Dreos, A.; Wang, Z.; Moth‐Poulsen,
K.; Becker, J.; Wegner, H. A. Intermolecular London Dispersion Inter‐
actions of Azobenzene Switches for Tuning Molecular Solar Thermal
Energy Storage Systems. ChemPlusChem 2019, 84, 1145‐1148.
40.
Schnurbus, M.; Stricker, L.; Ravoo, B. J.; Braunschweig, B.
Smart Air–Water Interfaces with Arylazopyrazole Surfactants and
Their Role in Photoresponsive Aqueous Foam. Langmuir 2018, 34,
6028‐6035.
21.
Zhitomirsky, D.; Grossman, J. C. Conformal Electroplating
of Azobenzene‐Based Solar Thermal Fuels onto Large‐Area and Fiber
Geometries. ACS Appl. Mater. Interfaces 2016, 8, 26319‐26325.
22.
K.; Auernhammer, G. K.; Berger, R.; Butt, H.‐J.; Wu, S. Photoswitching
of Glass Transition Temperatures of Azobenzene‐containing Poly‐
mers Induces Reversible Solid‐to‐Liquid Transitions. Nat. Chem. 2017,
9, 145‐151.
41.
Lamping, S.; Stricker, L.; Ravoo, B. J. Responsive Surface
Adhesion based on Host–Guest Interaction of Polymer Brushes with
Cyclodextrins and Arylazopyrazoles. Polym. Chem. 2019, 10, 683‐690.
42.
Zhou, H.; Xue, C.; Weis, P.; Suzuki, Y.; Huang, S.; Koynov,
Gibson, R. S. L.; Calbo, J.; Futchter, M. J. Chemical Z−E Iso‐
mer Switching of Arylazopyrazoles Using Acid. ChemPhotoChem,
2019, 3, 372‐377.
43.
Avran, L.; Feller, M.; Klajn, R. Reversible Switching of Arylazopyrazole
within a Metal–Organic Cage. Beilstein J. Org. Chem. 2019, 15, 2398‐
2407.
44.
cis‐ and trans‐Azobenzene. J. Am. Chem. Soc. 1939, 61, 2925‐2927.
45. Xu, W.‐C.; Sun, S.; Wu, S. Photoinduced Reversible Solid‐
to‐Liquid Transitions for Photoswitchable Materials. Angew. Chem.,
Int. Ed. 2019, 58, 9712‐9740.
46.
K.; Kawakita, M.; Kimizuka, N. Photoliquefiable Ionic Crystals: A
Phase Crossover Approach for Photon Energy Storage Materials with
Functional Multiplicity. Angew. Chem., Int. Ed. 2015, 54, 1532‐1536.
Hanopolskyi, A. I.; De, S.; Bialek, M. J.; Diskin‐Posner, Y.;
23.
Saydjari, A. K.; Weis, P.; Wu, S. Spanning the Solar Spec‐
trum: Azopolymer Solar Thermal Fuels for Simultaneous UV and Vis‐
ible Light Storage. Adv. Energy Mater. 2017, 7, 1601622.
24.
E.; Damm, W.; Venkataraman, D. High Energy Density in Azoben‐
zene‐based Materials for Photo‐Thermal Batteries via Controlled Pol‐
ymer Architecture and Polymer‐Solvent Interactions. Sci. Rep. 2017, 7,
17773.
Jeong, S. P.; Renna, L. A.; Boyle, C. J.; Kwak, H. S.; Harder,
Corruccini, R. J.; Gilbert, E. C. The Heat of Combustion of
25.
Kucharski, T. J.; Ferralis, N.; Kolpak, A. M.; Zheng, J. O.;
Ishiba, K.; Morikawa, M. a.; Chikara, C.; Yamada, T.; Iwase,
Nocera, D. G.; Grossman, J. C. Templated Assembly of Photoswitches
Significantly Increases the Energy‐Storage Capacity of Solar Thermal
Fuels. Nat. Chem. 2014, 6, 441‐447.
26.
Jiang, Y.; Huang, J.; Feng, W.; Zhao, X.; Wang, T.; Li, C.; Luo,
47.
Han, G. D.; Park, S. S.; Liu, Y.; Zhitomirsky, D.; Cho, E.;
W. Molecular Regulation of Nano‐Structured Solid‐State AZO‐
SWCNTs Assembly Film for the High‐Energy and Short‐Term Solar
Thermal Storage. Sol. Energy Mater. Sol. Cells 2019, 193, 198‐205.
Dincă, M.; Grossman, J. C. Photon Energy Storage Materials with High
Energy Densities based on Diacetylene–Azobenzene Derivatives. J.
Mater. Chem. A 2016, 4, 16157‐16165.
27.
Yang, W.; Feng, Y.; Si, Q.; Yan, Q.; Long, P.; Dong, L.; Fu,
48.
Kimizuka, N.; Yanai, N.; Morikawa, M.‐a. Photon Upcon‐
L.; Feng, W. Efficient Cycling Utilization of Solar‐Thermal Energy for
Thermochromic Displays with Controllable Heat Output. J. Mater.
Chem. A 2019, 7, 97‐106.
version and Molecular Solar Energy Storage by Maximizing the Poten‐
tial of Molecular Self‐Assembly. Langmuir 2016, 32, 12304‐12322.
49.
cally‐Regulated Thermal Energy Storage in Diverse Organic Phase‐
Change Materials. Chem. Commun. 2018, 54, 10722‐10725.
Han, G. G. D.; Deru, J. H.; Cho, E. N.; Grossman, J. C. Opti‐
28.
Pang, W.; Xue, J.; Pang, H. A High Energy Density Azoben‐
zene/Graphene Oxide Hybrid with Weak Nonbonding Interactions
for Solar Thermal Storage. Sci. Rep. 2019, 9, 5224.
29.
Olmsted, J.; Lawrence, J.; Yee, G. G. Photochemical Storage
Potential of Azobenzenes. Sol. Energy 1983, 30, 271‐274.
ACS Paragon Plus Environment