Z. A. N. Al-Shamkhani, A. H. Essa / Tetrahedron Letters 48 (2007) 5547–5550
5549
O
O
N
1.22
N
N
1.18
N
1.34
1.20
106.30
1.42
18.42
1.46
1.38
HN
1.13
HN
1.50
NH
1.39
NH
1.50
N
5.87
N
1.34
1.35
1.43
1.14
117.30
171.14
N
N
1.62
1.16
O
O
PM3
AM1
˚
˚
Figure 2. Structures of bis-(3,5-dimethyl-4-nitrosopyrazole) with bond lengths shown in Angstroms (A) and bond angles in degrees (ꢁ) computed
using the semi-empirical AM1 and PM3 methods.
was due to the C-6 and C-7 methyl protons, which
exist in analogous chemical environments. The sec-
ond resonance can be attributed to the N-1 amino
protons.
References and notes
1. Anderson, L.; Cameron, M.; Gowenlock, B. G.; McEwen,
I. J. J. Chem. Soc., Perkin Trans. 2 1992, 243.
2. Fletcher, D. A.; Gowenlock, B. G.; Orrell, K. G. J. Chem.
Soc., Perkin Trans. 2 1997, 2201.
3. Fletcher, D. A.; Gowenlock, B. G.; Orrell, K. G.; Sik, V.
J. Chem. Soc., Perkin Trans. 2 1995, 191.
4. Bock, W. P.; Lorentz, G.; Trap, P. J. Liebigs. Ann. Chem.
1952, 325, 129.
5. Habraken, C. L. Rec. Trav. Chem. Pays-Bas. 1986, 87,
1242.
6. Boyed, G. V.; Norris, T. J. Chem. Soc., Perkin Trans. 1
1974, 1028.
In the 13C NMR spectrum of the trans-compound, three
resonances were observed. These signals were due to the
five carbon atoms, C-6, C-7 = 28.48 ppm, C-3, C-5 =
86.33 ppm, and C-4 = 132.59 ppm. 13C NMR spectros-
copy has provided interesting structural information
on C-nitroso compounds, and the large difference
(<20 ppm) between the C–NO and C–N2O2–C reso-
nances clearly allows the prediction of monomeric
N–O or dimeric N2O2 modes in the solid state.25,26
7. Habraken, C. L.; Beenakker, C. I.; M. Brusec, J. J.
Heterocycl. Chem.. 1972, 9, 939.
8. Mathew, L.; Osei-Twan, E. W.; Warentin, J. Can. J.
Chem. 1991, 69, 1398.
9. Bolton, J. L.; Peterson, M. R.; McClelland, R. A. Can. J.
Chem. 1988, 66, 3044.
10. Bosch, F.; Kochi, J. J. Org. Chem. 1994, 59, 5573.
11. Parhi, A. K.; Franck, R. W. Org. Lett. 2004, 6, 3063.
12. Stappers, F.; Broeckx, R.; Leurs, S.; Van Den Bergh, L.;
Agten, J.; Lambrechts, A.; Van den Heuvel, D.; De
Smaele, D. Org. Process Res. Dev. 2002, 6, 911.
13. Shing, T. K. M.; Wong, W. F.; Ikeno, T.; Yamada, T.
Org. Lett. 2007, 9, 207.
Figure 2 displays the geometry optimization of bis-(3,5-
dimethyl-4-nitrosopyrazole) using semi-empirical AM1
and PM3 methods.27 The figures show bond lengths in
Angstroms (A) and bond angles in degrees (ꢁ).
˚
Preparation of trans-bis-(3,5-dimethyl-4-nitrosopyraz-
ole) dimer: Acetyl acetone (10 g, 0.1 mol) was added to
a solution of concentrated hydrochloric acid in water
(9 ml HCl in 50 ml H2O), and cooled in ice to 8 ꢁC.
Sodium nitrite (7.1 g, 0.1 mol) in 20 ml of water was added
dropwise and the mixture was allowed to stand for
20 min. Hydrazine hydrate (5.4 g, 0.1 mol) was added
with stirring, which resulted in immediate formation of
a white crystalline precipitate of trans-bis-(3,5-di-
methyl-4-nitrosopyrazole) dimer. This was filtered off,
washed with ethanol, dried and then recrystallized from
chloroform. Melting point (mp) = 114–116 ꢁC, CHN
analysis for C10H14N6O2 Calcd: C, 47.99; H, 5.64; N,
33.59%. Found: C, 47.52; H, 5.52; N, 33.50. UV
(CHCl3), kmax 254 nm and 296 nm. IRm = 3103 (N–H),
2896 (CH3), 1625 (C@N), 1508 (C@C), 1309 (N@N),
´
14. Topic, D.; Aschwanden, P.; Fa¨ssler, R.; Carreira, E. M.
Org. Lett. 2005, 7, 5329.
15. Kanemasa, S.; Oderaotoshi, Y.; Tanaka, J.; Wada, E. J.
Am. Chem. Soc. 1998, 120, 12355.
16. White, J. D.; Hansen, J. D. J. Am. Chem. Soc. 2002, 124,
4950.
17. Gowenlock, B. G.; Cameron, M.; Boyed, A. S.; Al-Tahou,
B. M.; McKenna, P. Anal. J. Chem. 1994, 72, 514.
18. Al-Shamkhani, Z. A. J. Basrah Res. 2002, 28, 81.
19. Al-Shamkhani, Z. A. J. Basrah Res. 2006, 32, 88.
20. Al-Shamkhani, Z. A., M.Sc. Thesis, University of Basrah.,
2000.
21. Luttke, W.; Skanke, P. N.; Traetteberg, M. Theor. Chem.
Acta. 2004, 87, 321.
22. Witanowski, M.; Biodrzycka, Z.; Webb, G. A. Mag.
Reson. Chem. 1996, 34, 233.
1
1220 (N–O), 1093 (C–N) cmÀ1. H NMR (400 MHz,
CDCl3) dH = 2.34 (6H, s, 2 · CH3) and 7.20 (2H, s,
2 · NH) ppm. 13C NMR (100 MHz, CDCl3) dC = 28.48,
86.33 and 132.59 ppm.
23. Gowenlock, B. G.; King, B.; Pfaband, J.; Witanowski, M.
J. Chem. Soc., Perkin Trans. 2 1997, 483.
24. Gowenlock, B. G.; Batt, L. J. Mol. Struct. Theochem.
1998, 103, 454.
25. Fletcher, D.; Gowenlock, B. G.; Orrell, K. G.; Sik, V.
Magn. Reson. Chem. 1995, 35, 569.
Acknowledgment
We wish to express thanks to Professor B. G. Gowenlok,
School of Chemistry, the University of Exeter for carry-
ing out NMR analysis.
26. Anderson, L.; Boyed, A. S.; Cameron, M.; Gowenlock, B.
G.; Higgnison, C. M.; McEwen, I. J.; Smith, J. P. J. Chem.
Res. 1994, 245.