J. Am. Chem. Soc. 2000, 122, 8093-8094
8093
General Synthesis of Racemic Me2Si-Bridged
Bis(indenyl) Zirconocene Complexes
Xingwang Zhang,† Qingming Zhu,† Ilia A. Guzei,‡ and
Richard F. Jordan*,§
Department of Chemistry
The UniVersity of Iowa, Iowa City, Iowa 52242
Department of Chemistry
Iowa State UniVersity, Ames, Iowa, 50011
Department of Chemistry, The UniVersity of Chicago
5735 South Ellis AVenue, Chicago, Illinois 60637
Figure 1. Molecular structure of Zr{PhN(CH2)3NPh}Cl2(THF)2 (1). Bond
distances (Å): Zr-Cl(1) 2.4785(5), Zr-Cl(2) 2.4565(5), Zr-O(1)
2.321(1), Zr-O(2) 2.302(2). Bond angles (deg): Cl(1)-Zr-Cl(2)
164.00(2), O(1)-Zr-O(2) 79.32(5). Torsion angles (deg): N(1)-Zr-
N(2)-C(10) -133.8(2), N(2)-Zr-N(1)-C(4) -127.8(2).
ReceiVed March 21, 2000
Chiral racemic ansa-zirconocene complexes can be activated
by MAO or other cocatalysts to generate excellent catalysts for
isotactic R-olefin polymerization and other stereoselective reac-
tions.1 Racemic SiMe2-bridged bis(indenyl) zirconocenes that con-
tain methyl and aryl substituents at the indenyl 2 and 4 positions,
respectively, are among the best metallocene catalysts for the pro-
duction of high molecular weight, isotactic poly(R-olefins).2 ansa-
Zirconocenes are normally synthesized by salt-elimination reac-
tions between ansa-bis(indenyl) dianion reagents and ZrX4 or Zr-
X4L2 compounds. However, the factors that control chemoselec-
tivity (i.e. metallocene vs dinuclear products) and diastereose-
lectivity (i.e. rac/meso selectivity) in these reactions are not well
understood, and extensive screening studies of reagents, counter-
ions, solvents, use of added ligands, and reaction conditions are
required for each case to optimize yields.3 Amine elimination
reactions of ansa-bis(indenes) and Zr(NR2)4 compounds provide
efficient routes to simple ansa-zirconocenes, but this approach
is not successful for sterically crowded cases.4 Here we report a
general, high-yield synthesis of rac-SiMe2-bridged bis(indenyl)
zirconocenes that exploits the conformational properties of a
simple chelating diamide ligand to control diastereoselectivity.
The chelated propylene-diamide complex Zr{PhN(CH2)3NPh}-
Cl2(THF)2 (1) can be prepared by two methods as shown in
Scheme 1. The reaction of ZrCl4 and 2 equiv of Li2[PhN(CH2)3-
NPh] in toluene affords Zr{PhN(CH2)3NPh}2 as a yellow solid
in 73% isolated yield. The reaction of ZrCl4 and Zr{PhN(CH2)3-
NPh}2 in THF/Et2O (1:1 by volume) yields 1 as a yellow solid
quantitatively.5 Alternatively, 1 can be prepared directly by the
reaction of ZrCl4 with 1 equiv of Li2[PhN(CH2)3NPh] in THF/
Et2O in 81% isolated yield.
Scheme 1
1 is monomeric and has approximate C2 symmetry with the C2
axis lying along the Zr- - -C(2) vector and bisecting the O(1)-
Zr-O(2) angle. The geometry at Zr is distorted octahedral and
the weak donor THF ligands are trans to the strong donor amide
groups. The Zr-N bond distances (2.082(2), 2.080(2) Å) are
normal and the N(1)-Zr-N(2) angle (91.63(6)°) is close to the
ideal octahedral value. The six-membered C(1)-N(1)-Zr-N(2)-
C(3)-C(2) chelate ring adopts a twist conformation.7 The N(1),
Zr, N(2), and C(2) atoms are coplanar to within 0.02 Å, and C(1)
and C(3) lie 0.79 Å above and below the N(1)-Zr-N(2)-C(2)
plane, respectively. This conformation places the two phenyl rings
on opposite sides of the N(1)-Zr-N(2)-C(2) plane; the C(4)-
A view of the molecular structure of 1 which highlights the
conformation of the chelate ring is shown Figure 1.6 Compound
† The University of Iowa.
‡ Iowa State University.
§ The University of Chicago.
(1) (a) Brintzinger, H. H.; Fischer, D.; Mu¨lhaupt, R.; Rieger, B.; Waymouth,
R. M. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143. (b) Hoveyda, A. H.;
Morken, J. P. Angew. Chem., Int. Ed. Engl. 1996, 35, 1262.
(2) (a) Spaleck, W.; Ku¨ber, F.; Winter, A.; Rohrmann, J.; Bachmann, B.;
Antberg, M.; Dolle, V.; Paulus, E. F. Organometallics 1994, 13, 954. (b)
Stehling, U.; Diebold, J.; Kirsten, R.; Ro¨ll, W.; Brintzinger, H. H.; Ju¨ngling,
S.; Mu¨lhaupt, R.; Langhauser, F. Organometallics 1994, 13, 964. (c) Spaleck,
W.; Antberg, M.; Rohrmann, J.; Winter, A.; Bachmann, B.; Kiprof, P.; Behm,
J.; Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1992, 31, 1347. (d) Ju¨ngling,
S.; Mu¨lhaupt, R.; Stehling, U.; Brintzinger, H. H.; Fischer, D.; Langhauser,
F. J. Polym. Sci. A: Polym. Chem. 1995, 33, 1305. See also: (e) Resconi, L.;
Balboni, D.; Baruzzi, G.; Fiori, C.; Guidotti, S.; Mercandelli, P.; Sironi, A.
Organometallics 2000, 19, 420.
1
N(1)- -N(2)-C(10) torsion angle is 145.2°.8 However, the H
NMR spectrum of 1 contains two methylene resonances for the
diamide ligand in a 2:1 intensity ratio down to -105 °C (THF-
d8), which implies that ring inversion is fast on the NMR scale
in solution.
(3) The best reported syntheses of rac-Me2Si-bridged zirconocenes that
we are aware of are given in ref 2 and the following: (a) Strickler, J. R.;
Power, J. M. U.S. Patent 5,847,175, 1998; Chem. Abstr. 1998, 130, 52581.
(b) Rohrmann, J.; Ku¨ber, F. U.S. Patent 5,616,747, 1997. (c) Fischer, D.;
Schweier, G.; Brintzinger, H. H.; Damrau, H. R. H. European Patent
Application 0 745 606 A2, 1996; Chem. Abstr. 1996, 126, 75069.
(4) (a) Christopher, J. N.; Diamond, G. M.; Jordan, R. F. Organometallics
1996, 15, 4038. (b) Diamond, G. M.; Jordan, R. F.; Petersen, J. L. J. Am.
Chem. Soc. 1996, 118, 8024.
(6) X-ray data for 1: tetragonal, P42/n, a ) b ) 24.977(1) Å, c ) 7.8479(4)
Å, V ) 4895.8(4) Å3, Z ) 8, T ) 173(2) K, Dcalc ) 1.440 g/cm3; R1 )
0.0248, wR2 ) 0.0708 for 5002 independent reflections with I > 2σ(I); GOF
on F2 ) 0.997.
(7) March, J. AdVanced Organic Chemistry; Wiley: New York, 1985; p 124.
(8) In contrast, the chelate rings in 4- and 5-coordinate Zr(IV) and Ti(IV)
propylene-diamide complexes containing bulky aryl or silyl N-substituents
adopt boat conformations. (a) Scollard, J. D.; McConville, D. H.; Vittal, J. J.
Organometallics 1995, 14, 5478. (b) Scollard, J. D.; McConville, D. H.; Payne,
N. C.; Vittal, J. J. Macromolecules 1996, 29, 5241. (c) Lee, C. H.; La, Y.;
Park, J. W. Organometallics 2000, 19, 344.
(5) This procedure is based on the reported synthesis of Zr(NMe2)2Cl2-
(THF)2. Brenner, S.; Kempe, R.; Arndt, P. Z. Anorg. Allg. Chem. 1995,
621, 2021.
10.1021/ja001005z CCC: $19.00 © 2000 American Chemical Society
Published on Web 08/04/2000