Crystal data for 7. C8H12N4Se2I2, Mr = 575.9, triclinic, space
(b) C. D. Antoniadis, S. K. Hadjikakou, N. Hadjiliadis, M. Kubicki
and I. S. Butler, Eur. J. Inorg. Chem., 2004, 4324–4329 and references
therein; (c) M. C. Aragoni, M. Arca, F. Demartin, F. A. Devillanova,
A. Garau, F. Isaia, V. Lippolis and G. Verani, Dalton Trans., 2005,
2252–2258.
2 D. S. Cooper, Lancet, 2003, 362, 459–468; D. S. Cooper,
N. Engl. J. Med., 2005, 352, 905–917 and references therein.
3 (a) M. J. Berry, L. Banu and P. R. Larsen, Nature, 1991, 349, 438–440;
(b) M. J. Berry, J. D. Kieffer, J. W. Harney and P. R. Larsen, J. Biol.
Chem., 1991, 266, 14155–14158; (c) J. Ko¨hrle, Methods Enzymol., 2002,
347, 125–167; J. Ko¨hrle, Thyroid, 2005, 15, 841–843.
4 (a) T. J. Visser, E. Kaptein and H. Y. Aboul-Enein, Biochem. Biophys.
Res. Commun., 1992, 189, 1362–1367; (b) A. Taurog, M. L. Dorris, L. J.
Guziec and F. S. Guziec, Jr., Biochem. Pharmacol., 1994, 48, 1447–1453;
(c) A. Taurog, M. L. Dorris, W.-X. Hu and F. S. Guziec, Jr., Biochem.
Pharmacol., 1995, 49, 701–709.
¯
˚
group P1, a = 6.6979(1), b = 10.3741(2), c = 12.158(3) A, a
◦
3
˚
= 68.916(3); b = 82.135(3); c = 78.816(3) , V = 771.16(1) A ,
Z = 2, qcalcd = 2.48 Mg m−3, Mo-Ka radiation (k = 0.71073
˚
A), T = 293(2) K, GOF = 1.03; R1 = 0.023, wR2 = 0.056
(I > 2r(I)); R1 = 0.026, wR2 = 0.058 (all data). The structure was
solved by a direct method (SIR-92)18 and refined by a full-matrix
least-squares procedure on F2 for all reflections (SHELXL-97).19,20
CCDC reference number 293611. For crystallographic data in CIF
or other electronic format see DOI: 10.1039/b604060h.
Lactoperoxidase (LPO)-catalyzed iodination of L-tyrosine
Inhibition of LPO-catalyzed iodination of L-tyrosine. This
procedure, using various concentrations of MSeI (4) was carried
out by an HPLC method. The incubation mixtures for the HPLC
analysis contained KI (1 × 10−3 M), L-tyrosine (1 × 10−3 M),
hydrogen peroxide (1 × 10−3 M) and LPO enzyme (1 lg) in
0.05 M phosphate buffer, pH 7.4. The mixture was incubated at
room temperature and aliquots (10 lL) injected onto the HPLC
column and eluted with a gradient solvent system (0.1% TFA in
water–MeCN). The decrease in the amount of tyrosine (lg) was
calculated from the calibration plot. The chromatograms were
extracted at 277 nm.
5 (a) G. Roy, M. Nethaji and G. Mugesh, J. Am. Chem. Soc., 2004, 126,
2712–2713; (b) G. Roy and G. Mugesh, J. Am. Chem. Soc., 2005, 127,
15207–15217.
6 (a) M. C. Aragoni, M. Arca, F. Demartin, F. A. Devillanova, A. Garau,
F. Isaia, V. Lippolis, V and G. Verani, J. Am. Chem. Soc., 2002, 124,
4538–4539; (b) C. D. Antoniadis, G. J. Corban, S. K. Hadjikakou,
N. Hadjiliadis, M. Kubicki, S. Warner and I. S. Butler, Eur. J. Inorg.
Chem., 2003, 1635–1640; (c) V. Daga, S. K. Hadjikakou, N. Hadjiliadis,
M. Kubicki, J. H. Z. dos Santos and I. S. Butler, Eur. J. Inorg. Chem.,
2002, 1718–1728; (d) G. J. Corban, S. K. Hadjikakou, N. Hadjiliadis, M.
Kubicki, E. R. T. Tiekink, I. S. Butler, E. Drougas and A. M. Kosmas,
Inorg. Chem., 2005, 44, 8617–8627.
7 T. J. Visser, E. Van Overmeeren, D. Fekkes, R. Docter and G.
Hennemann, FEBS Lett., 1979, 103, 314–318.
8 F. Freeman, J. W. Ziller, H. N. Po and M. C. Keindl, J. Am. Chem. Soc.,
1988, 110, 2586–2591.
The effect of hydrogen peroxide concentration on the inhibition
(Fig. 3). In this HPLC assay, the incubation mixtures contained
KI (1 × 10−4 M), L-tyrosine (9 × 10−4 M) and LPO enzyme (1.5 lg)
in 0.05 M phosphate buffer, pH 7.4. The mixtures were incubated
at room temperature and aliquots (10 lL) were injected onto the
HPLC column and eluted with a gradient solvent system (0.1%
TFA in water–MeCN). The formation of the monoiodotyrosine
was followed at 295 nm.
9 M. C. Aragoni, M. Arca, A. J. Blake, F. A. Devillanova, W.-W. du
Mont, A. Garau, F. Isaia, V. Lippolis, G. Verani and C. Wilson, Angew.
Chem., Int. Ed., 2001, 40, 4229–4232 and references therein.
10 W.-W. du Mont, A. Martens von Salzen, F. Ruthe, E. Seppa¨la¨, G.
Mugesh, F. A. Devillanova, V. Lippolis and N. Kuhn, J. Organomet.
Chem., 2001, 623, 14–28 and references therein.
11 P. Deplano, J. R. Ferraro, M. L. Mercuri and E. F. Trogu, Coord. Chem.
Rev., 1999, 188, 71–95 and references therein.
12 The X-ray crystal structure of 4 suggests that the compound does not
have a true selone moiety, but that it exists in a zwitterionic form in
which the selenium carries a negative charge and one of the nitrogen
atoms in the five-membered ring is protonated. The average C–Se bond
Theoretical calculations
All calculations were performed using the Gaussian98 suite of
quantum chemical programs.13 The hybrid Becke 3–Lee–Yang–
Parr (B3LYP) exchange correlation functional was applied for
DFT calculations.14 Geometries were fully optimized at the B3LYP
level of theory using 6-31G(d) basis sets. All stationary points were
characterized as minima by the corresponding Hessian indices.
The HOMO calculations were done at the B3LYP/6-31G(d)
level. The solvent effect was included in the calculations at the
same level using Tomasi’s polarizable continuum model (PCM) in
aqueous solution.15 All structures were characterized as potential
energy minima at the B3LYP level by verifying that all vibrational
frequencies were real.
˚
˚
length of 1.848 A is shorter than a C–Se single bond (1.94 A), but
˚
significantly longer than a C–Se double bond (1.74 A). This indicates
that the C–Se bond in compound 4 has only partial double bond
character. G. Roy, D. Das and G. Mugesh, Inorg. Chim. Acta, submitted.
13 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E.
Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels,
K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R.
Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski,
G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V.
Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-
Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe,
P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres,
M. Head-Gordon, E. S. Replogle and J. A. Pople, GAUSSIAN 98,
Gaussian, Inc., Pittsburgh, PA, 1998.
Acknowledgements
14 C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785; A. D.
Becke, J. Chem. Phys., 1993, 98, 5648–1552.
We thank Prof. T. N. Guru Row for helpful discussions. This study
was supported by the Department of Science and Technology
(DST), and the Council of Scientific and Industrial Research
(CSIR), New Delhi, India. GR acknowledges the CSIR for a
research fellowship.
15 S. Miertus, E. Scrocco and J. Tomasi, J. Chem. Phys., 1981, 55, 117–129.
16 Z. Zhou and R. G. Parr, J. Am. Chem. Soc., 1990, 112, 5720–5724.
17 M. C. Aragoni, M. Arca, F. Demartin, F. A. Devillanova, A. Garau,
P. Grimaldi, F. Isaia, F. Lelj, V. Lippolis and G. Verani, Eur. J. Inorg.
Chem., 2004, 2363–2368.
18 A. Altomare, G. Cascarano, C. Giacovazzo and A. Gualardi, J. Appl.
Crystallogr., 1993, 26, 343–350.
19 G. M. Sheldrick, Acta Crystallogr., Sect. A: Fundam. Cryst., 1990, 46,
467–473.
References
1 (a) C. Laurence, M. J. El Ghomari, M. J.-Y. Le Questel, M. Berthelot
and R. Mokhlisse, J. Chem. Soc., Perkin Trans. 2, 1998, 1545–1551;
20 G. M. Sheldrick, SHELX-97, Program for refinement of crystal
structures, University of Go¨ttingen, Germany, 1997.
This journal is
The Royal Society of Chemistry 2006
Org. Biomol. Chem., 2006, 4, 2883–2887 | 2887
©