T. J. Hingston et al. / Tetrahedron Letters 47 (2006) 7413–7415
7415
The FTIR spectra of C , 2,3-bis-(bromomethyl)-1,4-
13. Murata, Y.; Han, A.; Komatsu, K. Tetrahedron Lett.
003, 44, 8199.
4. Fujiwara, K.; Komatsu, K. Org. Lett. 2002, 4, 1039.
15. Belik, P.; G u¨ gel, A.; Spickermann, J.; M u¨ llen, K. Angew.
Chem., Int. Ed. Engl. 1993, 32, 78.
6
0
2
dibromo-2-butene, the C60 monomer and the C60 dimer
showed a number of interesting features. The C
1
6
0
À1
absorption band at 525 cm was retained in both the
monomer and dimer. Also observed in both products
À1
16. Paquette, L. A.; Graham, R. J. J. Org. Chem. 1995, 60,
were the CH stretching peaks at ꢀ2970 cm and CH2
2
2
958.
7. Cope, A. C.; Kagan, F. J. Am. Chem. Soc. 1958, 80, 5499.
18. Synthesis of 2,3-bis-(bromomethyl)-1,4-dibromo-2-butene:
,3-dimethylbutadiene (8.4 ml, 0.078 mol) was dissolved in
carbon tetrachloride (CCl4) (50 ml). Bromine (12 g,
0.075 mol) dissolved in CCl (50 ml) was added dropwise
over 3 h at 0 ꢁC with stirring. After this time, NBS (26.7 g,
.15 mol), AIBN (cat.) and CCl (15 ml) were added. The
À1
deformations at ꢀ1250 cm appearing in the products
1
and the bromine-bearing reagent, but not in C .
6
0
2
A short-chain fullerene dimer prepared from readily
available starting materials has been successfully synthes-
ised and characterised. A monomer intermediate has been
isolated and has the potential for functionalisation with a
wide range of organic molecules or other fullerenes.
4
0
4
reaction mixture was heated under reflux for 12 h. The
resulting solution was filtered while hot to remove
succinimide, with the liquid cooled to form crystals of
the impure product. The crystals were filtered cold, and
Acknowledgements
recrystallised from ethyl acetate to give the pure product
1
(
(
2
8.98 g, 30%). H NMR (500 MHz, CDCl
3
): d = 4.15
S82176/01). G.A.D.B. thanks EPSRC for a Professorial
Research Fellowship (GR/S15808/01). We thank the
EPSRC National Mass Spectrometry Service Centre,
University of Wales, Swansea, for MALDI analysis.
13
s, 8H; CH2). C NMR (125.8 MHz, CDCl ): d = 137.1,
3
À1
7.82. FTIR (KBr disc) 2970 cm (CH stretch (w)), 1440
2
(
CH
2
bend (s)), 1250 (C–H deformation (s)), 720 (CH
2
À
rocking (m)). EI MS m/z: 399.7321 M Calculated mass
399.7319.
1
9. Synthesis of monomer 1 and dimer 2: C60 (474 mg,
0
.658 mmol) and 2,3-bis-(bromomethyl)-1,4-dibromo-2-
References and notes
butene (148 mg, 0.329 mmol) were placed in a round-
bottomed flask along with 18-crown-6 (750 mg,
2.84 mmol), KI (125 mg, 0.753 mmol) and toluene
(125 ml). This was heated under reflux overnight in the
absence of light with stirring under an atmosphere of
nitrogen. The product mixture was allowed to cool, and
then washed with 5% NaOH aqueous solution (125 ml)
1
2
. Segura, J. L.; Martin, N. Chem. Soc. Rev. 2000, 29, 13.
. van Hal, P. A.; Knol, J.; Langeveld-Voss, B. M. W.;
Meskers, S. C. J.; Hummelen, J. C.; Janssen, R. A. J. J.
Phys. Chem. A 2000, 104, 5974.
. Kreher, D.; Cariou, M.; Liu, S.-G.; Levillain, E.; Veciana,
J.; Rovira, C.; Gorgues, A.; Hudhomme, P. J. Mater.
Chem. 2002, 12, 2137.
3
2
and H O (125 ml). The toluene layer was collected, and
dried over magnesium sulfate. After filtration and solvent
exchange for fresh toluene, the products were separated
using HPLC, giving monomer 1 in 75% yield (443 mg) and
4
. Segura, J. L.; Martin, N.; Guldi, D. M. Chem. Soc. Rev.
2
005, 34, 31.
5
. (a) Negishi, N.; Takimiya, K.; Otsubo, T.; Harima, Y.;
dimer 2 produced in 12% yield (112 mg).
20. Monomer 1: H NMR (500 MHz, CS
1
Aso, Y. Chem. Lett. 2004, 33, 654; (b) S a´ nchez, L.;
/CDCl
2
(3:1))
3
´
Herranz, M. A.; Mart ´ı n, N. J. Mater. Chem. 2005, 15,
d = 4.56 (4H, d, J = 5.9 Hz), 4.19 (4H, d, J = 5.9 Hz).
13
1
409.
2 3
C NMR (125.8 MHz, CS /CDCl (3:1)) d = 155.5,
6
7
8
. Wang, G.-W.; Murata, Y.; Komatsu, K.; Wang, T. S. M.
Chem. Commun. 1996, 2059.
. Wang, G.-W.; Komatsu, K.; Murata, Y.; Shiro, M.
Nature 1997, 387, 583.
. Komatsu, K.; Wang, G.-W.; Murata, Y.; Tanaka, T.;
Fujiwara, K.; Yamamoto, K.; Saunders, M. J. Org. Chem.
147.3, 146.3, 146.0, 145.5, 145.3, 145.2, 144.8, 144.4,
142.9, 142.3, 141.9, 141.8, 141.4, 140.0, 136.9, 135.5, 65.0,
À1
44.5, 30.1, 29.5. FTIR (KBr disc) 2970 cm (CH
2
stretch
(w)), 1440 (CH
2
bend (s)), 1250 (C–H deformation (s)),
720 (CH rocking (s)), 525 (C60 (s)). UV–vis k (toluene)/
2
3
À1
À1
nm 290 (e/dm mol cm 52,004), 330 Sh (33,662), 436
Sh (2775). MALDI m/z: 959.9 M .
21. Dimer 2: H NMR (500 MHz, CS
À
1
998, 63, 9358.
1
9
. Lebedkin, S.; Ballenweg, S.; Gross, J.; Taylor, R.;
2
/CDCl
3
(3:1)) d = 8.40
Kr a¨ tschmer, W. Tetrahedron Lett. 1995, 36, 4971.
(4H, d, J = 5.3 Hz), 8.09 (4H, d, J = 5.3 Hz). FTIR (KBr
À1
1
1
1
0. Smith, A. B.; Tokuyama, H.; Strongin, R. M.; Furst, G.
T.; Romanow, W. J. J. Am. Chem. Soc. 1995, 117, 9359.
1. Gromov, A.; Lebedkin, S.; Ballenweg, S.; Avent, A. G.;
Taylor, R.; Kratschmer, W. Chem. Commun. 1997, 209.
2. Dragoe, N.; Shimotani, H.; Wang, J.; Iwaya, M.; de
Bettencourt-Dias, A.; Balch, A. L.; Kitazawa, K. J. Am.
Chem. Soc. 2001, 123, 1294.
disc) 2970 cm (CH
2
2
stretch (w)), 1440 (CH bend (s)),
1250 (C–H deformation (s)), 720 (CH
(C60 (s)). UV–vis k (Toluene)/nm 286 (e/dm mol cm
2
rocking (s)), 525
3
À1
À1
24,135), 330 (41,399), 434 Sh (4,672). MALDI m/z:
À
1521.1 M .
22. Hirsh, A.; Gr o¨ sser, T.; Siebe, A.; Soi, A. Chem. Ber. 1993,
126, 1061.