2324
E. D. Matveeva et al.
LETTER
at 1200 cm–1 (P=O), 3200–3400 cm–1 (N–H and NH2) and
1180 cm–1 (C–O) in the IR spectra of given compounds. IR
spectra of a-benzylaminophosphonates solutions were
measured under the dilution forty times over. At that
intensity and frequency the absorption bands of phosphonic
and NH-associated groups did not change. This fact is
evidence of the presence of intramolecular hydrogen bonds.
(28) Selected NMR data are presented below. Compound 1a. 1H
NMR (400 MHz, CDCl3): d = 0.88 (d, 3 H, CH3-cycl.), 1.34,
1.36 (2 t, 6 H, 2CH3), 1.53, 1.66, 1.87 (3 m, 9 H, cycl., NH),
3.92 (d, 3JPH = 3.2 Hz, 2 H, CH2-Bz), 4.16 (br m, 4 H,
OCH2), 7.31, 7.38 (2 m, 5 H, arom.) ppm. 13C NMR (400
MHz, CDCl3): d = 16.32 (d, 3JCP = 4.6 Hz, CH3), 19.68 (d,
J = 12.2 Hz, CH3, cycl.), 22.15, 25.38, 28.65, 34.09, 37.61
(cycl.), 46.84 (CH2-Bz), 56.30 (d, 1JPC = 141.9 Hz, C-1),
61.83, 61.34 (2JPC = 6.1 Hz, OCH2), 126.39, 127.78, 127.87,
141.09 (C arom.) ppm. 31P NMR (400 MHz, CDCl3): d =
28.52 ppm. IR: 1240 (P=O), 3340, 3470 (NH) cm–1.
Compound 10a. 1H NMR (400 MHz, CDCl3): d = 1.12, 1.27
(2 t, 6 H, 2CH3), 1.34, 1.64, 2.10, 2.24 (4 m, 14 H, cycl.),
2.75 (br s, 1 H, NH), 3.55 (A part AB syst, JAB = 13.2 Hz, 1
H, CH2Bz), 3.83 (B part AB syst, JAB = 13.2 Hz, 1 H,
CH2Bz), 3.80, 3.94, 4.10 (3 m, 4 H, OCH2), 7.27, 7.37 (2 m,
5 H, Ar) ppm. 13C NMR: d = 16.36, 16.58 (2 d, 3JCP = 6.3
Hz, CH3), 24.66, 25.29, 31.31, 34.13, 35.82, 44.18 (cycl.),
51.19 (d, J = 12.6 Hz, CH2-Bz), 60.12 (d, 1JPC = 154.1 Hz,
C-1, cycl.), 62.98, 63.15, (2JPC = 7.8 Hz, OCH2), 127.29,
128.10, 128.52, 128.87 (C Ar). 31P NMR: d = 22.5 ppm. IR:
1235 (P=O), 3260, 3360 (NH) cm–1. Anal. Calcd for
C21H32NPO3(377): C, 66.84; H, 8.49; N, 3.71; P, 8.22.
Found: C, 67.87; H, 7.50; N, 3.57.
Acknowledgment
This work was supported by grants from RFFI No. 01-03-33085,
No. 02-03-32163; UR 05.03.003; Grant of President of Russia for
support of Scientific School -2051.2003.3.
References
(1) Sheridan, R. P. J. Chem. Inf. Comput. Sci. 2002, 42, 103.
(2) Grembecka, J.; Mucha, A.; Cierpicki, T.; Kafarski, P. J.
Med. Chem. 2003, 46, 2641.
(3) Bird, J.; De Mello, R. C.; Harper, G. P.; Hunter, D. J.;
Karran, E. H.; Markwell, R. E.; Miles-Williams, A. J.;
Rahman, S. S.; Ward, R. W. J. Med. Chem. 1994, 37, 158.
(4) McLeod, D. A.; Brinkworth, R. I.; Ashley, J. A.; Janda, K.
D.; Wirsching, P. Bioorg. Med. Chem. Lett. 1991, 653.
(5) Moore, J. D.; Sprott, K. T.; Hanson, P. R. J. Org. Chem.
2002, 67, 8123.
(6) Liu, W.; Rogers, C. J.; Fisher, A. J.; Toney, M. Biochemistry
2002, 41, 12320.
(7) Ranu, B. C.; Hajra, A.; Jana, U. Org. Lett. 1999, 1, 1141.
(8) Kim, K. S.; Hurh, E. Y.; Youn, J. N.; Park, J. I. J. Org. Chem.
1999, 64, 9272.
(9) Osipov, S. N.; Artyushin, O. I.; Kolomiets, A. F.; Bruneau,
C.; Dixneuf, P. H. Synlett 2000, 1031.
(10) Kabachnik, M. I.; Medved’, T. Ya. Dokl. Akad. Nauk SSSR
1952, 689; Chem. Abstr. 1953, 47, 2724b.
(11) Fields, E. K. J. Am. Chem. Soc. 1952, 74, 1528.
(12) Kuchar, V. P.; Solodenko, V. A. Russ. Chem. Rev. 1987, 56,
1504.
(13) Cherkasov, R. A.; Galkin, V. I. Russ. Chem. Rev. 1998, 67,
940.
(14) Kuchar, V. P.; Svistunova, N. Yu.; Solodenko, V. A.;
Soloshonok, V. A. Russ. Chem. Rev. 1993, 62, 284.
(15) Uziel, J.; Genêt, J. P. Zh. Org. Khim. 1997, 33, 1605.
(16) LaPointe, A. M. J. Comb. Chem. 1999, 1, 101.
(17) Pudovik, A. N. Dokl. Akad. Nauk SSSR 1952, 83, 865;
Chem. Abstr. 1953, 47, 4300.
(18) Laschat, S.; Kunz, H. Synthesis 1992, 90.
(19) Quian, C.; Huang, T. J. Org. Chem. 1998, 63, 4125.
(20) Manabe, K.; Kobayashi, S. Chem. Commun. 2000, 669.
(21) Lee, S.-gi.; Park, J. H.; Kang, J.; Lee, J. K. Chem. Commum.
2001, 1698.
Compound 10b. 1H NMR (CDCl3): d = 1.36 (t, 6 H, 2CH3),
1.52, 1.74, 1.85, 2.13, (3 m, 10 H, cycl.), 2.35, 2.42 (2 m, 4
H cycl.), 3.01 (br s, 2 H, NH2), 4.21 (m, 4 H, OCH2), 7.27,
7.37 (2 m, 5 H, Ar) ppm. 13C NMR: d = 16.08 (CH3), 26.13,
26.62, 31.66, 31.77, 33.27, 33.41, 38.77, 46.88 (cycl.), 62.19
(d, 2JPC = 7.8 Hz, OCH2) ppm. 31P NMR: d = 25.39 ppm. IR:
1245 (P=O), 3280 (NH2) cm–1.
Compound 12a. 1H NMR (CDCl3): d = 1.05, 1.15 (2 m, 2 H,
cycl.), 1.34, 1.35 (2 t, 6 H, 2CH3), 1.51, 1.88, 2.12, 2.26, 2.60
(5 m, 10 H, cycl.), 3.69 (A part AB syst., JAB = 13.4 Hz, 1 H,
CH2Bz), 3.85 (B part AB syst, JAB = 13.4 Hz, 1 H, CH2Bz),
3.99–4.23 (m, 4 H, OCH2), 7.21, 7.31, 7.37 (3 m, 5 H, Ar)
ppm. 31P NMR: d = 30.53, 31.44 (2 s, 2:1) ppm.
(22) Tomilova, L. G.; Rodionova, G. N.; Lucyanetz, E. A. Koord.
Chim. 1979, 5, 549; Chem. Abstr. 1979, 91, 221595d.
(23) Kochmann, W.; Gunter, E.; Rothling, T. Z. Chem. 1976, 16,
184.
(29) These signals are at 1.30–1.36 ppm (t, CH3) and at 4.10–4.20
2
ppm (complicated multiplet OCH2 JPH = 3.1 Hz).
(30) In 1H NMR spectra, the protons of CH3 groups were
observed at d = 1.15 and 1.30 ppm (2 t, 1:1). The diastereo-
topic protons of two diastereotopic OCH2 groups appear as
several multiplets at 3.80–4.50 ppm (2JPH = 3.1 Hz): either
four multiplets in ratio 1:1:1:1 or the superposition of three
multiplets in ratio 1:2:1. In 1H NMR spectra of a-benzyl-
aminophosphonates (series a) the signals of diastereotopic
benzyl protons resonate at 3.50–3.70 ppm as two doublets
(JAB = 12.8 Hz).
(24) Fadel, A.; Tesson, N. Eur. J. Org. Chem. 2000, 2153.
(25) General Procedure: To the solution of ketone (2 mmol) in
solvent (3 mL, see Table 1), the benzylamine (2 mmol) or
NH4(CO3)2 (6 mmol), anhyd MgSO4 (2 mmol) and Pht-122
(10 mol%; 0.2 mmol) as a catalyst were added. The reaction
mixture was heated for 3–4 h. Then diethylphosphite (2.4
mmol) was added. The reaction mixture was stirred for 12–
24 h (see Table 1). The desiccant was then filtered and
washed with 2 mL of CH2Cl2. The solvent was evaporated,
and the residue was purified by chromatography on silica gel
(eluent: CH2Cl2/MeOH = 20:1). In the case of steric
hindered and cage ketones (adamantanone-2, camphor and
norbornanone) 50% amine excess is required.
(31) There is the corresponding duplication of signals of the
diastereotopic ethoxy group in 13C NMR spectra. In fact,
CH3 groups resonate as two doublets at d = 16.00 ppm
(3JPC = 6.3–6.5 Hz) and the OCH2 group as two doublets at
62.00–63.00 ppm (2JPC = 8.6 Hz). These values are in
agreement with available literature data.24 The quaternary
carbon atom resonates at d = 50.00-60.00 ppm (1JPC = 140–
150 Hz).27
(26) All obtained compounds gave satisfactory elemental
analyses with the range of C 0.3%, H 0.2%, N 0.3%.
(27) IR spectra registration was carried out in condensed phase
and in the solution in CCl4. There are stretches absorptions
Synlett 2003, No. 15, 2321–2324 © Thieme Stuttgart · New York