H. Konishi et al. / Tetrahedron Letters 50 (2009) 620–623
623
in solution.14 This is because its small annulus prevents the pas-
sage of the methoxy groups. On the other hand, in the present case,
the nitro groups at the extra-annular position play an important
role in producing a more rigid macrocyclic framework. There are
three reasons which may explain the effect of the nitro group on
the conformational inflexibility. The first is the conjugation be-
tween the dinitrobenzene rings and the bridging nitrogen atoms,
by which the bridging CN bonds are considerably shortened. The
second is the intramolecular hydrogen bondings between the N–
H proton and one of the oxygen atoms of nitro group at the ortho
position. This interaction is expected to reduce the mobility of
the 1,3-dinitrobenzene rings. The third is the steric hindrance be-
tween the nitro groups and the neighboring isopropyl substituents.
The bulky alkyl groups may destabilize the transition state of the
ring inversion, thus increasing the macrocyclic inversion barrier.
For all these reasons, the conformational flexibility of 3b is signif-
icantly diminished when compared to 4.
In summary, we have found that the tetranitroazacalix[4]arenes
can be synthesized by facile nucleophilic aromatic substitution,
and that the dinitrobenzene units strongly affect the conforma-
tional properties of the azacalix[4]arenes both in the solid state
and in solution. Further investigations are planned to provide addi-
tional information with regard to the effect of the nitro groups on
the conformational properties of the heteroatom-bridged calix-
arenes.
7. (a) Ito, A.; Ono, Y.; Tanaka, K. New J. Chem. 1998, 779–781; (b) Ito, A.; Ono, Y.;
Tanaka, K. J. Org. Chem. 1999, 64, 8236–8241; (c) Miyazaki, Y.; Kanbara, T.;
Yamamoto, T. Tetrahedron Lett. 2002, 43, 7945–7948; (d) Wang, M. X.; Zhang, X.
H.; Zheng, Q. Y. Angew. Chem., Int. Ed. 2004, 43, 838–842; (e) Suzuki, Y.; Yanagi,
T.; Kanbara, T.; Yamamoto, T. Synlett 2005, 263–266; (f) Fukushima, W.;
Kanbara, T.; Yamamoto, T. Synlett 2005, 2931–2934; (g) Tsue, H.; Ishibashi, K.;
Takahashi, H.; Tamura, R. Org. Lett. 2005, 7, 2165–2168; (h) Ishibashi, K.; Tsue,
H.; Tokita, S.; Matsui, K.; Takahashi, H.; Tamura, R. Org. Lett. 2006, 8, 5991–
5994; (i) Gong, H. Y.; Zhang, X. H.; Wang, D. X.; Ma, H. W.; Zheng, Q. Y.; Wang,
M. X. Chem. Eur. J. 2006, 12, 9262–9275; (j) Liu, S. Q.; Wang, D. X.; Zheng, Q. Y.;
Wang, M. X. Chem. Commun. 2007, 3856–3858; (k) Vale, M.; Pink, M.; Rajca, S.;
Rajca, A. J. Org. Chem. 2008, 73, 27–35; (l) Zhang, E. X.; Wang, D. X.; Zheng, Q. Z.;
Wang, M. X. Org. Lett. 2008, 10, 2565–2568.
8. (a) Graubaum, H.; Lutze, G.; Tittelbach, F.; Bartoszek, M. J. Prakt. Chem. 1995,
337, 401–404; (b) Yang, X.; Lowe, C. R. Tetrahedron Lett. 2003, 44, 1359–1362;
(c) Wang, M. X.; Yang, H. B. J. Am. Chem. Soc. 2004, 126, 15412–15422; (d)
Wang, Q. Q.; Wang, D. X.; Ma, H. W.; Wang, M. X. Org. Lett. 2006, 8, 5967–5970;
(e) Note added in proof: Recently, metal-free synthesis of 3a has been reported.
Touli, M.; Lachkar, M.; Siri, O. Tetrahedron Lett. 2008, 49, 7250–7252.
9. 14,16,54,56-Tetranitro-2,4,6,8-tetraaza-1,3,5,7(1,3)-tetrabenzenacyclooctaphane
(3a): A mixture of 1 (5.0 mmol, 1.02 g), 2a (5.0 mmol, 0.54 g), and K2CO3
(10 mmol, 1.38 g) in DMF (25 ml) was stirred at 100 °C for 2 h under Ar. To this
solution were added water and methanol, and the crude product that
precipitated was collected by suction and washed with methanol. The
insoluble material was recrystallized from DMSO to produce the pure
azacalix[4]arene 3a (0.66 g, 49%). Mp 270 °C (dec.), 400 MHz 1H NMR
(DMSO-d6, 50 °C) d 5.48 (s, 2H), 7.14 (m, 4H), 7.15 (m, 2H), 7.47 (t, 2H,
J = 8.0 Hz), 9.03 (s, 2H), 9.62 (s, 4H, NH), 125 MHz 13C NMR (DMSO-d6, 50 °C) d
96.0, 124.7, 125.3, 125.7, 127.2, 131.0, 138.7, 147.1.
10. 14,16,54,56-Tetraisopropyl-34,36,74,76-tetranitro-2,4,6,8-tetraaza-1,3,5,7(1,3)-
tetrabenzenacyclooctaphane (3b): The reaction of
analogously conducted as above for 4 h. Recrystallization of the
crude product from toluene/ethyl acetate produced the
azacalix[4]arene 3b (42 mg, 12%). Mp 320 °C (dec.), 400 MHz 1H
NMR (CDCl3, 30 °C) 1.07 (d, 12H, J = 7.0 Hz, –CH(CH3)2), 1.18 (d,
1
and 2b was
d
Supplementary data
12H, J = 7.0 Hz, –CH(CH3)2), 2.97 (sept, 4H, J = 7.0 Hz, –CH(CH3)2), 5.30
(s, 2H, Hin), 6.95 (s, 2H, H), 7.36 (s, 2H, H), 9.34 (s, 2H, Hout), 9.64 (s,
4H, NH), 125 MHz 13C NMR (DMSO-d6, 130 °C)
d 22.0 (CH3), 22.5
Supplementary data (Experimental procedures for the prepara-
tion of compound 2b) associated with this article can be found, in
(CH3), 27.5 (CH), 94.5, 124.2, 124.4, 127.7, 128.3, 133.7, 146.0, 147.9.
12. X-ray crystal structure analysis: The X-ray data were collected at 173 K using a
Rigaku R-AXIS RAPID-S imaging plate area detector with graphite
monochromated Mo K
a (k = 0.7107 Å) radiation using the x scan mode. The
References and notes
structure was solved by direct methods with SIR200415 and refined with SHELXL
-
97.16 Non-hydrogen atoms were anisotropically refined. All hydrogen atoms
excluding the N–H groups were included at the calculated positions, and the
nitrogen-bonded hydrogens were located by difference electron density map,
and refined isotropically. All calculations were performed using the WINGX
crystallographic software package.17 Crystallographic data in cif format (Refs.
CCDC 697464, 697465) can be obtained free of charge from The Cambridge
Crystals of 3a were obtained by recrystallization from dimethylsulfoxide:
C24H16N8O8Á(C2H6OS)2, M = 700.70, monoclinic, space group C2/c (No. 15),
a = 23.367(13), b = 8.649(5), c = 14.379(5), b = 98.90(3), V = 2871(3) Å3, Z = 4,
1. (a)Calixarenes: A Versatile Class of Macrocyclic Compounds; Vicens, J., Böhmer, V.,
Eds.; Kluwer Academic Press: Dordrecht, 1991; (b) Gutsche, C. D. In
Monographs in Supramolecular Chemistry: Calixarenes Revisited; Stoddart, J. F.,
Ed.; The Royal Society of Chemistry: Cambridge, 1998; (c)Calixarenes in Action;
Mandolini, L., Ungaro, R., Eds.; Imperial College Press: London, 2000; (d) Asfari,
Z.; Böhmer, V.; Harrowfield, J.; Vicens, J. Calixarenes 2001; Kluwer Academic:
Dordrecht, 2001.
2. (a) König, B.; Fonseca, M. H. Eur. J. Inorg. Chem. 2000, 2303–2310; (b) Vysotsky,
M.; Saadioui, M.; Böhmer, V. In Calixarenes 2001; Asfari, Z., Böhmer, V.,
Harrowfield, J., Vicens, J., Eds.; Kluwer: Dordrecht, 2001; pp 250–265. Chapter
13; (c) Tsue, H.; Ishibashi, K.; Tamura, R. Top. Heterocycl. Chem. 2008, 17, 73–96;
(d) Wang, M. X. Chem. Commun. 2008, 4541–4551.
q
c = 1.621 g cmÀ3
, 2hmax = 55°. F(000) = 1456. A total of 20,241 reflections
were measured, 3297 unique. The final cycle of full-matrix least squares
refinement was based on all observed reflections, 226 variable parameters,
with factors of R = 0.068, wR2 = 0.227, GOF = 1.108, max./min. residual electron
density 0.41/À0.55 Å3.Crystals of 3b were obtained by recrystallization from
3. (a) Gilbert, E. E. J. Heterocycl. Chem. 1974, 11, 899–904; (b) Lehmann, F. P. A.
Tetrahedron 1974, 30, 727–733; (c) Katz, J. L.; Feldman, M. B.; Conry, R. R. Org.
Lett. 2005, 7, 91–94; (d) Katz, J. L.; Selby, K. J.; Conry, R. R. Org. Lett. 2005, 7,
3505–3507; (e) Csokai, V.; Kulik, B.; Bitter, I. Supramol. Chem. 2006, 18, 111–
115; (f) Hao, E.; Fronczek, F. R.; Vicente, M. G. H. J. Org. Chem. 2006, 71, 1233–
1236; (g) Jiao, L.; Hao, E.; Fronczek, F. R.; Smith, K. M.; Vicente, M. G. H.
Tetrahedron 2007, 63, 4011–4017; (h) Konishi, H.; Mita, T.; Yasukawa, Y.;
Morikawa, O.; Kobayashi, K. Tetrahedron Lett. 2008, 49, 6831–6834.
4. (a) Konishi, H.; Tanaka, K.; Teshima, Y.; Mita, T.; Morikawa, O.; Kobayashi, K.
Tetrahedron Lett. 2006, 47, 4041–4044; (b) Katz, J. L.; Geller, B. J.; Conry, R. R.
Org. Lett. 2006, 8, 2755–2758; (c) Konishi, H.; Mita, T.; Morikawa, O.;
Kobayashi, K. Tetrahedron Lett. 2007, 48, 3029–3032; (d) Wang, Q. Q.; Wang,
D. X.; Zheng, Q. Y.; Wang, M. X. Org. Lett. 2007, 9, 2847–2850.
ꢀ
acetone: C36H40N8O8Á(C3H6O)2, M = 828.92, triclinic, space group P1 (No. 2),
a = 12.471(1), b = 12.644(2), c = 16.263(2),
c
a = 68.632(1), b = 89.778(2),
= 67.134(2) Å, V = 2171.9(4) Å3, Z = 2,
q
c = 1.268 g cmÀ3
,
2hmax = 55°.
F(000) = 880. A total of 21,124 reflections were measured, 9864 unique. The
final cycle of full-matrix least squares refinement was based on all observed
reflections, 557 variable parameters, with factors of R = 0.045, wR2 = 0.114,
GOF = 1.042, max./min. residual electron density 0.42/À0.26 Å3.
13. Allen, F. H.; Baalham, C. A.; Lommerse, J. P. M.; Raithby, P. R.; Sparr, E. Acta
Crystallogr., Sect. B 1997, 53, 1017–1024.
14. Tsue, H.; Ishibashi, K.; Tokita, S.; Matsui, K.; Takahashi, H.; Tamura, R. Chem.
Lett. 2007, 36, 1374–1375.
5. Freund, T.; Kübel, C.; Baumgarten, M.; Enkelmann, V.; Gherghel, L.; Reuter, R.;
Müller, K. Eur. J. Chem. 1998, 555–564.
6. (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J. F.; Buchwald, S. L. Acc. Chem. Res. 1998,
31, 805–818; (b) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852–860.
15. Burla, M. C.; Caliandro, R.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.; De Caro,
L.; Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 2005, 38, 381–388.
16. Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112–122.
17. Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837–838.