10.1002/anie.202101483
Angewandte Chemie International Edition
RESEARCH ARTICLE
additions to deliver a-TCO products. The strategy can be applied
to the synthesis of a range of usefully functionalized a-TCOs with
high yield, selectivity. a-TCOs were also shown to be more
reactive than standard TCOs and less hydrophobic than even
hydrophilic oxo-TCO analogs. As a demonstration of the
favorable physicochemical properties of a-TCOs, a fluorescent
TAMRA derivative was shown to be cell-permeable by
demonstrating intracellular Diels-Alder chemistry in live cells and
to washout of HeLa cells more rapidly and completely than TCO
and oxo-TCO analogs.
Acknowledgements
This work was supported by NIH GM132460 and Pfizer.
Instrumentation was supported by NIH awards P20GM104316,
P30GM110758, S10RR026962, and S10OD016267 and NSF
awards CHE-0840401, CHE-1229234, and CHE-1048367. J. R.
and A. J. were supported as CBI fellows through NIH T32-
GM1333395.
# =equal contributions
Keywords: trans-cyclooctene • tetrazine • diastereoselective •
hydrophilic • bioorthogonal
Figure 4. (A) Structures of TAMRA and conjugates with TCO, oxo-TCO and a-
TCO. (B,C) HeLa cells were incubated for 30 min with TAMRA-dyes, and cells
were initially washed three times with PBS, and then cell media was exchanged
after 10, 40 and 120 minutes. After each wash, cells were imaged live by
fluorescence microscopy with illumination at 531 nm and with fixed-intensity
across all samples. (B) Widefield images cells after 3 washes. (C) Comparison
of background fluorescence across all experiments, quantified by dividing total
fluorescence by the number of cells in each image.
[1]
a) E. M. Sletten, C. R. Bertozzi, Angew. Chem. Int. Ed. 2009, 48, 6974-
6998; b) E. M. Sletten, C. R. Bertozzi, Acc. Chem. Res. 2011, 44, 666-
676; c) C. P. Ramil, Q. Lin, Chem Commun 2013, 49, 11007-11022; d)
M. King, A. Wagner, Bioconjug. Chem. 2014, 25, 825-839; e) K. Lang,
J. W. Chin, ACS Chem. Biol. 2014, 9, 16-20; f) D. M. Patterson, L. A.
Nazarova, J. A. Prescher, ACS Chem. Biol. 2014, 9, 592-605; g) M.
Vrabel, T. Carell, Cycloadditions in Bioorthogonal Chemistry, Springer
International Publishing, Switzerland, 2016; h) L. H. Qin, W. Hu, Y. Q.
Long, Tetrahedron Lett. 2018, 59, 2214-2228.
[2]
[3]
a) R. Rossin, M. S. Robillard, Curr. Opin. Chem. Biol. 2014, 21, 161-
169; b) J. P. Meyer, P. Adumeau, J. S. Lewis, B. M. Zeglis, Bioconjug.
Chem. 2016, 27, 2791-2807.
washed three times with DPBS, and then cell media was
exchanged after 10, 40 and 120 minutes. After each wash, cells
were imaged live by fluorescence microscopy with illumination at
531 nm and fixed-intensity across all samples. Widefield images
of the cells after 3 washes are shown in Figure 4B; images after
the earlier and later washings are shown in Figure S10.
Background fluorescence was quantified by dividing total
fluorescence by the number of cells in each image (Figure 4C).
For TAMRA-TCO, cells are markedly fluorescent after 3 washings,
and still display significant background after washing for 2 hours.
The background is improved with TAMRA-oxo-TCO and
especially with TAMRA-a-TCO, which after initial 3x wash shows
an 85% reduction in background fluorescence relative to TAMRA-
TCO. After 2 hours, washout of TAMRA-a-TCO is essentially
complete with background equivalent to TAMRA itself, whereas
TAMRA-TCO and TAMRA-oxo-TCO both still display residual
fluorescence even after 2 hours.
a) R. M. Versteegen, R. Rossin, W. ten Hoeve, H. M. Janssen, M. S.
Robillard, Angew. Chem. Int. Ed. 2013, 52, 14112-14116; b) J. Li, S.
Jia, P. R. Chen, Nat. Chem. Biol. 2014, 10, 1003-1005; c) J. C. T.
Carlson, H. Mikula, R. Weissleder, J. Am. Chem. Soc. 2018, 140, 3603-
3612; d) X. Y. Ji, Z. X. Pan, B. C. Yu, L. K. De la Cruz, Y. Q. Zheng, B.
W. Ke, B. H. Wang, Chem. Soc. Rev. 2019, 48, 1077-1094; e) A. van
Onzen, R. M. Versteegen, F. J. M. Hoeben, I. A. W. Filot, R. Rossin, T.
Zhu, J. Wu, P. J. Hudson, H. M. Janssen, W. Ten Hoeve, M. S.
Robillard, J. Am. Chem. Soc. 2020, 142, 10955-10963.
T. E. Brown, K. S. Anseth, Chem. Soc. Rev. 2017, 46, 6532-6552.
A. Darko, S. Wallace, O. Dmitrenko, M. M. Machovina, R. A. Mehl, J.
W. Chin, J. M. Fox, Chem. Sci. 2014, 5, 3770-3776.
M. Royzen, G. P. A. Yap, J. M. Fox, J. Am. Chem. Soc. 2008, 130,
3760-3761.
R. Rossin, S. M. van Duijnhoven, W. Ten Hoeve, H. M. Janssen, L. H.
Kleijn, F. J. Hoeben, R. M. Versteegen, M. S. Robillard, Bioconjug.
Chem. 2016, 27, 1697-1706.
a) N. K. Devaraj, R. Upadhyay, J. B. Haun, S. A. Hilderbrand, R.
Weissleder, Angew. Chem. Int. Ed. 2009, 48, 7013-7016; b) J. Schoch,
M. Staudt, A. Samanta, M. Wiessler, A. Jaschke, Bioconjug. Chem.
2012, 23, 1382-1386.
[4]
[5]
[6]
[7]
[8]
[9]
J. E. Pigga, J. M. Fox, Isr. J. of Chem. 2020, 60, 207-218.
[10] R. Rossin, S. M. van den Bosch, W. Ten Hoeve, M. Carvelli, R. M.
Versteegen, J. Lub, M. S. Robillard, Bioconjug. Chem. 2013, 24, 1210-
1217.
[11] A. Vazquez, R. Dzijak, M. Dracinsky, R. Rampmaier, S. J. Siegl, M.
Vrabel, Angew. Chem. Int. Ed. 2017, 56, 1334-1337.
[12] A. Darko, S. J. Boyd, J. M. Fox, Synthesis 2018, 50, 4875-4882.
[13] W. D. Lambert, S. L. Scinto, O. Dmitrenko, S. J. Boyd, R. Magboo, R.
A. Mehl, J. W. Chin, J. M. Fox, S. Wallace, Org. Biomol. Chem. 2017,
15, 6640-6644.
[14] M. T. Taylor, M. L. Blackman, O. Dmitrenko, J. M. Fox, J. Am. Chem.
Soc. 2011, 133, 9646-9649.
[15] H. E. Murrey, J. C. Judkins, C. W. Am Ende, T. E. Ballard, Y. Fang, K.
Riccardi, L. Di, E. R. Guilmette, J. W. Schwartz, J. M. Fox, D. S.
Johnson, J. Am. Chem. Soc. 2015, 137, 11461-11475.
Conclusion
In summary, a-TCOs are a class of trans-cyclooctenes with
favorable physiochemical properties that can be prepared in high
yield through the stereocontrolled additions of nucleophiles to
trans-cyclooct-4-enone (2), a trans-cyclooctene that can be
prepared on large scale in two steps from 1,5-cyclooctadiene.
Computation was used to rationalize diastereoselectivity of 1,2-
5
This article is protected by copyright. All rights reserved.