Inorganic Chemistry
Article
3JH−H = 7.6 Hz). 31P{1H} NMR (161.82 MHz, CDCl3, 25 °C, δ):
−1.75. 11B{1H} NMR (128.23 MHz, CDCl3, 25 °C, δ): −13.2.
13C{1H} NMR (100.5 MHz, CDCl3, 25 °C, δ): 17.5−18.5 (br), 122.8,
ACKNOWLEDGMENTS
■
We thank the Natural Science and Engineering Research
Council of Canada (NSERC), the Ontario Government, the
Canadian Foundation of Innovation (CFI), and The University
of Western Ontario for their generous funding. Prof. Robert
Schurko from the University of Windsor is thanked for sending
us the code for the WURST-QCPMG pulse sequence.
1
123.3, 126.4, 126.6, 128.0, 128.8, 130.7, 131.1, 131.1 (d, JP−C = 56.5
1
Hz), 132.3, 132.8, 132.9 (d, JP−C = 54.3 Hz), 133.5, 134.3, 159.5−
162.0 (br). FT-IR (cm−1 (ranked intensity)): 476 (13), 492 (7), 507
(4), 691 (1), 736 (3), 867 (5), 932 (11), 1098 (6), 1136 (12), 1307
(15), 1435 (2), 1484 (8), 3005 (14), 3038 (10), 3057 (9). FT-Raman
(cm−1 (ranked intensity)): 86 (4), 101 (3), 143 (2), 204 (11), 220
(9), 234 (12), 262 (13), 1001 (1), 1032 (8), 1099 (10), 1155 (15),
1586 (6), 2884 (14), 3041 (7), 3057 (5). Anal. Calcd (found): C,
60.05 (59.25); H, 4.51 (4.23).
REFERENCES
■
(1) Power, P. P. Nature 2010, 463, 171.
Synthesis of Compound 4. Compound 4 was prepared by a
method similar to that for 3 using the 40 min “GaI” sample and
[Li(THF)2(PiPr2CH2)2BPh2] (2); however, this compound could not
be isolated in greater than 85% purity. 1H NMR (400 MHz, C6D6, 25
°C, δ): 0.67 (dd, 6H, 3JH−H = 6.4 Hz, 3JP−H = 13.2 Hz), 0.80−0.95 (m,
12H), 1.13 (dd, 6H, 3JH−H = 6.8 Hz, 3JP−H = 13.2 Hz), 1.57 (br t, 2H),
2.05 (br t, 2H), 2.68−2.78 (br, 4H), 7.05 (t, 1H, 3JH−H = 7.6 Hz), 7.20
(2) Power, P. P. Acc. Chem. Res. 2011, 44, 627.
(3) Schmidt, E. S.; Jockisch, A.; Schmidbaur, H. J. Am. Chem. Soc.
1999, 1, 9758.
(4) Asay, M.; Jones, C.; Driess, M. Chem. Rev. 2010, 111, 354.
(5) Baker, R. J.; Farley, R. D.; Jones, C.; Kloth, M.; Murphy, D. M. J.
Chem. Soc., Dalton Trans. 2002, 3844.
(6) Hardman, N. J.; Eichler, B. E.; Power, P. P. Chem. Commun.
2000, 53, 1991.
(7) Jones, C.; Junk, P. C.; Platts, J. A.; Stasch, A. J. Am. Chem. Soc.
2006, 128, 2206.
(8) Jones, C.; Mills, D. P.; Platts, J. A.; Rose, R. P. Inorg. Chem. 2006,
45, 3146.
(9) Green, S. P.; Jones, C.; Stasch, A. Inorg. Chem. 2007, 46, 11.
(10) Baker, R. J.; Jones, C.; Platts, J. A. J. Am. Chem. Soc. 2003, 125,
10534.
(11) Arnold, P. L.; Liddle, S. T.; McMaster, J.; Jones, C.; Mills, D. P.
J. Am. Chem. Soc. 2007, 129, 5360.
3
3
(t, 1H, JH−H = 7.2 Hz), 7.30 (t, 2H, JH−H = 7.2 Hz), 7.35 (t, 2H,
3JH−H = 8.0 Hz), 7.70 (d, 2H, 3JH−H = 7.6 Hz), 7.90 (d, 2H, 3JH−H = 7.6
Hz). 31P{1H} NMR (161.82 MHz, C6D6, 25 °C, δ): 21.5. 11B{1H}
NMR (128.23 MHz, C6D6, 25 °C, δ): −13.0.
Synthesis of [Li(THF)4][GaI3-GaI(PiPr2CH2)2BPh2] (5). A sol-
ution of [Li(THF)2(PiPr2CH2)2BPh2] (2; 57.9 mg, 0.10 mmol, 1.0
equiv) in THF (3 mL) was prepared. Separately, a vial was charged
with “GaI” (40.0 mg, 0.20 mmol, 2.0 equiv; 100 min preparation time)
followed by THF (3 mL) to give a suspension of green particles. The
solution of 2 was immediately added to this suspension in a rapid
dropwise fashion and the resulting mixture stirred for 5 min. Solids
were removed by centrifugation, and the supernatant was concentrated
to an off-white solid in vacuo. Washing this solid with Et2O (3 × 3
mL) and further drying in vacuo yielded a white powder. Yield: 28%,
0.0387 g, 0.282 mmol. 1H NMR (400 MHz, C6D6, 25 °C, δ): 0.85 (dd,
(12) Green, S. P.; Jones, C.; Mills, D. P.; Stasch, A. Organometallics
2007, 26, 3424.
(13) Bonello, O.; Jones, C.; Stasch, A.; Woodul, W. D. Organo-
metallics 2010, 29, 4914.
(14) Burford, N.; Ragogna, P. J.; Robertson, K. N.; Cameron, T. S.;
Hardman, N. J.; Power, P. P. J. Am. Chem. Soc. 2001, 124, 382.
(15) Lichtenthaler, M. R.; Higelin, A.; Kraft, A.; Hughes, S.; Steffani,
A.; Plattner, D. A.; Slattery, J. M.; Krossing, I. Organometallics 2013,
32, 6725.
(16) Higelin, A.; Sachs, U.; Keller, S.; Krossing, I. Chem. Eur. J. 2012,
18, 10029.
(17) Higelin, A.; Haber, C.; Meier, S.; Krossing, I. Dalton Trans.
2012, 41, 12011.
3
3
3
6H, JH−H = 6.8 Hz, JP−H = 14.6 Hz), 0.95 (dd, 6H, JH−H = 6.4 Hz,
3JP−H = 14.6 Hz), 1.15 (dd, 6H, JH−H = 7.0 Hz, JP−H = 16.0 Hz),
3
3
2
1.30−1.40 (overlapping signals, 22H), 1.60 (t, 2H, JP−H = 15.4 Hz),
3
1.95 (t, 2H, JP−H = 15.4 Hz), 2.40−2.60 (overlapping doublet of
3
3
septets, 4H), 3.50 (t, 16H, JH−H = 6.4 Hz), 7.05 (t, 1H, JH−H = 7.6
3
3
Hz), 7.20 (t, 1H, JH−H = 8.0 Hz), 7.30 (t, 2H, JH−H = 7.2 Hz), 7.35
3
3
(t, 2H, JH−H = 7.6 Hz), 7.70 (d, 2H, JH−H = 7.2 Hz), 7.90 (d, 2H,
3JH−H = 8.0 Hz). 31P{1H} NMR (161.82 MHz, C6D6, 25 °C, δ): 17.9.
11B{1H} NMR (128.23 MHz, C6D6, 25 °C, δ): −13.4.
(18) Higelin, A.; Keller, S.; Gohringer, C.; Jones, C.; Krossing, I.
Angew. Chem., Int. Ed. 2013, 52, 4941.
̈
Reactions of “GaI” with Li{(NDippCMe)2CH (6). A solution of 6
(49.5 mg, 0.118 mmol, 1 equiv) was prepared in 1.5 mL of benzene-d6.
Separately, a suspension of “GaI” (35.3 mg, 0.177 mmol, 1.5 equiv) in
1.5 mL of benzene-d6 was prepared. The solution of 6 was added to
the “GaI” suspension dropwise. After the mixture was stirred for 1 h,
the crude suspension was filtered and a 1H NMR spectrum obtained to
characterize the product mixture.
(19) Slattery, J. M.; Higelin, A.; Bayer, T.; Krossing, I. Angew. Chem.,
Int. Ed. 2010, 49, 3228.
(20) Wehmschulte, R. J. Angew. Chem., Int. Ed. 2010, 49, 4708.
(21) Fedushkin, I. L.; Nikipelov, A. S.; Lyssenko, K. A. J. Am. Chem.
Soc. 2010, 132, 7874.
(22) Fedushkin, I. L.; Nikipelov, A. S.; Morozov, A. G.; Skatova, A.
A.; Cherkasov, A. V.; Abakumov, G. A. Chem.Eur. J. 2012, 18, 255.
(23) Cooper, B. F. T.; Macdonald, C. L. B. Mixed Valent
Compounds of Al, Ga, In and Tl. In The Group 13 Metals Aluminium,
Gallium, Indium and Thallium. Chemical Patterns and Peculiarities,;
Aldridge, S., Downs, A. J., Eds.; Wiley: Chichester, U.K., 2011.
(24) Jones, C.; Stasch, A. The Chemistry of the Group 13 Metals in
the +1 Oxidation State. In The Group 13 Metals Aluminium, Gallium,
Indium and Thallium. Chemical Patterns and Peculiarities; Aldridge, S.,
Downs, A. J., Eds.; Wiley: Chichester, U.K., 2011.
ASSOCIATED CONTENT
■
S
* Supporting Information
Text, figures, tables, and CIF files giving complete NMR
spectral data, solid-state NMR spectral data, the solid-state
structure of the potassium reduction product, and crystallo-
graphic data for 3−5 and the the potassium reduction product.
This material is available free of charge via the Internet at
(25) Baker, R. J.; Jones, C. Dalton Trans. 2005, 1341.
(26) Green, M. L. H.; Mountford, P.; Smout, G. J.; Speel, S. R.
Polyhedron 1990, 9, 2763.
(27) There have been considerable efforts in the synthesis of
gallium−iodine phases in varying stoichiometries, including a 1:1
phase that could be considered a type of “GaI”, prior to Green’s report.
For a brief description of this history and the appropriate citations, see
the Supporting Information.
AUTHOR INFORMATION
■
Corresponding Author
Notes
(28) Coban, S. Diplomarbeit; Universitat Karlsruhe, Karlsruhe,
The authors declare no competing financial interest.
Germany, 1999.
9655
dx.doi.org/10.1021/ic501139w | Inorg. Chem. 2014, 53, 9644−9656