The receptor moiety is the key for the design of ratiometric
sensors with good water solubility, except for aromatic
fluorophores with hydrophobicity. In the design and synthesis
electron-donating ability from the nitrogen atom of the
8-amino group to the quinoline ring. And the electron transfer
from the nitrogen atom of the heterocycle to the metal ion
further enhances the ICT process. As a result, a red-shift in
both emission and absorption wavelength could be observed.
Most importantly, the introduction of a 2-(2-hydroxyethoxy)-
ethylamino group provides not only another two metal-
coordination site (carboxamidoquinoline affords two sites)
but also a hydrophilic group.
AQZ was synthesized in a satisfactory yield by conjugat-
ing 2-(2-aminoethoxy)ethanol and 2-chloro-N-(quinol-8-yl)-
acetamide, which was prepared from 8-aminoquinoline and
2-chloroacetyl chloride (Scheme 1).
2+
of a ratiometric Zn fluoroionophore based on the ICT
mechanism, besides the famous di(2-picolyl)amine (DPA)
as a specific neutral receptor, well-known sulfonamidoquino-
9
line as a traditional receptor is widely used. We notice that
few reports on the Zn2 sensor of carboxamidoquinoline have
+
been published, except for Liu’s report on a novel supramo-
10
lecular system formed by 8-carboxamidoquinolyl-modifed
2+
â-cyclodextrin and 1-adamantaneacetic acid as a Zn sensor.
This system coordinated Zn2 through a cyclodextrin/
substrate/metal triple recognition mode. We wondered if a
+
2+
simple, small-molecule, ratiometric, and water-soluble Zn
sensor could be obtained based on carboxamidoquinoline,
that would not need the third component for recognition,
would reduce the complexity of measurement, and would
delete possible disturbing effects from Cd , Cu , and Ni ,
etc.
Scheme 1. Synthesis of AQZ
2+
2+
2+
Bearing this in mind, we synthesized a fluorescent sensor
of carboxamidoquinoline with an alkoxyethylamino chain
as receptor (AQZ) starting from 8-aminoquinoline. Here, the
introduction of a carboxamido group is of advantage to the
11
deprotonation of the 8-amino group. After binding metal
ions, the intramolecular hydrogen bond of 8-aminoquinoline
is broken, and the intramolecular electron-transfer process
is forbidden,3
a,12
thus enhancing fluorescence emission.
Simultaneously, the deprotonation process strengthens the
As expected, AQZ showed a very weak fluorescence (Φ
0.008, λmax(em) ) 440 nm) in tris-HCl (0.01 M) solution,
and its fluorescence was slightly influenced by the addition
0
(
6) (a) Taki, M.; Wolford, J. L.; O’Halloran, T. V. J. Am. Chem. Soc.
)
2
004, 126, 712-713. (b) Woodroofe, C. C.; Won, A. C.; Lippard, S. J.
Inorg. Chem. 2005, 44, 3112-3120. (c) Kiyose, K.; Kojima, H.; Urano,
Y.; Nagano, T. J. Am. Chem. Soc. 2006, 128, 6548-6549. (d) Zhang, L.;
Dong, S.; Zhu, L. Chem. Commun. 2007, 1891-1893. (e) Sumalekshmy,
S.; Henary, M. M.; Siegel, N.; Lawson, P. V.; Wu, Y.; Schmidt, K.; Br e´ das,
J. L.; Perry, J. W.; Fahrni, C. J. J. Am. Chem. Soc. 2007, 129, 11888-
2+
+
2+
2+
2+
+
+
3+
2+
of Cd , Ag , Ca , Mg , Pb , Na , K , Fe , and Hg
Figure 1). A fluorescence quenching was detected upon the
(
1
1889. (f) Komatsu, K.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem.
Soc. 2007, 129, 13447-13454.
(
7) (a) Wang, J.; Qian, X.; Cui, J. J. Org. Chem. 2006, 71, 4308-4311.
(
(
b) Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2006, 128, 14474-14475.
c) Kim, J. S.; Choi, M. G.; Song, K. C.; No, K. T.; Ahn, S.; Chang, S. K.
Org. Lett. 2007, 9, 1129-1132. (d) Wegner, S. V.; Okesli, A.; Chen, P.;
He, C. J. Am. Chem. Soc. 2007, 129, 3474-3475. (e) Nolan, E. M.; Lippard,
S. J. J. Am. Chem. Soc. 2007, 129, 5910-5918.
(
8) (a) Royzen, M.; Dai, Z.; Canary, J. W. J. Am. Chem. Soc. 2005,
1
2
3
27, 1612-1613. (b) Xu, Z.; Xiao, Y.; Qian, X.; Cui, J.; Cui, D. Org. Lett.
005, 7, 889-892. (c) Xu, Z.; Qian, X.; Cui, J. Org. Lett. 2005, 7, 3029-
032. (d) Yang, H.; Liu, Z.; Zhou, Z.; Shi, E.; Li, F.; Du, Y.; Yi, T.; Huang,
C. Tetrahedron Lett. 2006, 47, 2911-2914.
(9) (a) Frederickson, C. J.; Kasarskis, E. J.; Ringo, D.; Frederickson, R.
E. J. Neurosci. Methods 1987, 20, 91-103. (b) Zalewski, P. D.; Forbes, I.
J.; Betts, W. H. Biochem. J. 1993, 296, 403-408. (c) Fahrni, C. J.;
O’Halloran, T. V. J. Am. Chem. Soc. 1999, 121, 11448-11458. (d) Kimber,
M. C.; Mahadevan, I. B.; Lincoln, S. F.; Ward, A. D.; Tiekink, E. R. T. J.
Org. Chem. 2000, 65, 8204-8209. (e) Xue, G.; Bradshaw, J. S.; Dalley,
N. K.; Savage, P. B.; Izatt, R. M.; Prodi, L.; Montalti, M.; Zaccheroni, N.
Tetrahedron 2002, 58, 4809-4815. (f) Jiang, P.; Chen, L.; Lin, J.; Liu, Q.;
Ding, J.; Gao, X.; Guo, Z. Chem. Commun. 2002, 1424-1425. (g)
Hendrickson, K. M.; Geue, J. P.; Wyness, O.; Lincoln, S. F.; Ward, A. D.
J. Am. Chem. Soc. 2003, 125, 3889-3895. (h) Liu, Y.; Zhang, N.; Chen,
Y.; Wang. L. Org. Lett. 2007, 9, 315-318. (i) Teolato, P.; Rampazzo, E.;
Arduini, M.; Mancin, F.; Tecilla, P.; Tonellato, U. Chem. Eur. J. 2007, 13,
Figure 1. Fluorescence spectra of AQZ (10 µM) in tris-HCl (0.01
M) solution (methanol/water ) 1:9, v/v, pH ) 7.22) in the presence
of different metal ions (5 equiv), and nearly no response to some
2+
+
2+
2+
2+
+
+
3+
other metal ions (Cd , Ag , Ca , Mg , Pb , Na , K , Fe
,
2
4
1
238-2245.
10) Chen, Y.; Han, K.; Liu, Y. Bioorg. Med. Chem. 2007, 15, 4537-
542.
2+
Hg ). (Inset) Visible emission observed from AQZ in the absence
(
2+
and presence of Zn (5 equiv).
(11) (a) Hiratani, K.; Hirose, T.; Kasuga, K.; Saito, K. J. Org. Chem.
992, 57, 7083-7087. (b) Yang, T.; Tu, C.; Zhang, J.; Lin, L.; Zhang, X.;
Liu, Q.; Ding, J.; Xu, Q.; Guo, Z. Dalton Trans. 2003, 3419-3424.
addition of Cu2 (Φ/Φ
+
) 0.32, λmax(em) ) 442 nm), Co
2+
0
(12) Meervelt, L. V.; Goethals, M.; Leroux, N.; Zeegers-Huyskens, T.
2
+
J. Phys. Org. Chem. 1997, 10, 680-686.
(Φ/Φ
0
) 0.22, λmax(em) ) 442 nm), and Ni (Φ/Φ
0
) 0.22,
474
Org. Lett., Vol. 10, No. 3, 2008