(t, J = 6.9 Hz, 1H), 7.45–7.51 (m, 4H), 7.70 (d, J = 8.1 Hz, 2H), 8.94 (d,
J = 7.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) d 13.96 (1C), 17.96 (1C),
111.16 (1C), 114.36 (1C), 124.75 (1C), 127.94 (2C), 128.74 (1C), 129.23
(2C), 132.95 (1C), 134.90 (1C), 139.46 (1C), 147.75 (1C), 159.66 (1C),
159.98 (1C); IR (nujol, m / cm−1) 2039 (m), 1978 (m), 1965 (m), 1941 (w),
1671 (s), 1634 (m), 1600 (w), 1540 (w), 1419 (w), 1240 (m), 1191 (w), 1169
(m), 1142 (w), 1076 (m), 1030 (w), 909 (w), 804 (w), 775 (w), 759 (s), 728
(w), 689 (m), 666 (w), 651 (w); HR-MS ([M + H]+) calcd for C16H14N2O:
251.1184; found: 251.1186.
Scho¨nberg, B. H. Arison, O. D. Hensens, J. Hirchfield, K. Hoogsteen,
E. A. Kaczka, R. E. Rhodes, J. S. Kahan, F. M. Kahan, R. W. Ratcliffe,
E. Walton, L. J. Ruswinkle, R. B. Morin and B. G. Christensen, J. Am.
Chem. Soc., 1978, 100, 6491; indolizidine alkaloid: (e) W. H. Pearson
and E. J. Hembre, J. Org. Chem., 1996, 61, 5546; (f) H. Yoda, H. Katoh,
Y. Ujihara and K. Takabe, Tetrahedron Lett., 2001, 42, 2509; (g) K.
Kiewel, M. Tallant and G. A. Sulikowski, Tetrahedron Lett., 2001, 42,
6621; quinolidine alkaloid: (h) F. A. Davis and B. Chao, Org. Lett.,
2000, 2, 2623; (i) F. A. Davis, A. Rao and P. J. Carroll, Org. Lett., 2003,
5, 3855; (j) F. A. Davis, Y. Zhang and G. Anilkumar, J. Org. Chem.,
2003, 68, 8061.
1 (a) M. Beller, B. Cornils, C. D. Frohning and C. W. Kohlpaintner,
J. Mol. Catal. A: Chem., 1995, 104, 17; (b) C. D. Frohning, C. W.
Kohlpaintner and H.-W. Bohnen, in Applied Homogeneous Catalysis
with Organometallic Compounds, Vol. 1, ed. B. Cornils and W. A.
Herrmann, Wiley-VCH, Weinheim, 2002, pp. 31–194.
2 T. Morimoto and K. Kakiuchi, Angew. Chem., Int. Ed., 2004, 43,
5580.
7 (a) H. Antaki and V. Petrow, J. Chem. Soc., 1951, 551; (b) M. Shur
and S. S. Israelstam, J. Org. Chem., 1968, 33, 3015; (c) A. Halleux and
H. G. Viehe, J. Chem. Soc., 1970, 881; (d) K. Bowden and T. H. Brown,
J. Chem. Soc., 1971, 2163; (e) G. Bernath, F. Fu¨lo¨p, I. Hermecz and Z.
Meszaros, J. Heterocycl. Chem., 1979, 16, 137; (f) N. Katagiri, R. Niwa
and T. Kato, Heterocycles, 1983, 20, 597; (g) C. Plu¨g, W. Frank and C.
Wentrup, J. Chem. Soc., Perkin Trans. 2, 1999, 1087; (h) A. Fiksdahl,
C. Plu¨g and C. Wentrup, J. Chem. Soc., Perkin Trans. 2, 2000, 1841;
(i) R. Jakse, J. Svete, B. Stanovnik and A. Golobic, Tetrahedron, 2004,
60, 4601.
3 (a) A.-A. G. Shaikh and S. Sivaram, Chem. Rev., 1996, 96, 951; (b) D.
Delledonne, F. Rivetti and U. Romano, Appl. Catal., A, 2001, 221, 241;
(c) D. Delledonne, F. Rivetti and U. Romano, Appl. Catal., A, 2001,
´
221, 241; (d) M. Alvarez, D. Ferna´ndez and J. A. Joule, Tetrahedron
8 The yield was determined by 1H NMR with 1,1,2,2-tetrachloroethane
as an internal standard.
Lett., 2001, 42, 315; (e) P. Tundo and M. Selva, Acc. Chem. Res., 2002,
35, 706.
9 The 4H-pyrido[1,2-a]pyrimidin-4-one derivative 3a could be obtained
when 4a was exposed to the standard reaction conditions. This result
indicates the existence of 4a as an intermediate in the formation reaction
of 3a. Thus, 4b must also be the amide intermediate in the case of using
tosylisocyanate.
4 (a) F. Gatta, M. R. D. Giudice, A. Borioni and C. Mustazza,
J. Heterocycl. Chem., 1994, 31, 81; (b) R. Gref, J. Rodrigues and P.
Couvreur, Macromolecules, 2002, 35, 9861.
5 (a) R. N. Castle and S. D. Phillips, Comprehensive Heterocyclic
Chemistry: The Structure, Reactions, Synthesis and Uses of Heterocyclic
Compounds, Vol. 3, Part 2B, ed. A. R. Katritzky and C. W. Rees,
Pergamon, Oxford, 1984, pp. 329–368; (b) A. R. Katritzky and A. F.
Pozharskii, Handbook of Heterocyclic Chemistry, 2nd Ed., Pergamon,
Oxford, 2000, pp. 667–684.
6 For examples; penicillin, cephalosporin: (a) W. Du¨rckheimer, J.
Blumbach, R. Lattrell and K. H. Scheunemann, Angew. Chem., Int.
Ed. Engl., 1985, 24, 180; clavulanic acid: (b) T. T. Howarth, A. G.
Brown and T. J. King, J. Chem. Soc., Chem. Commun., 1976, 266;
thienamycin: (c) D. B. R. Johnston, S. M. Schmitt, F. A. Bonffard
and B. G. Christensen, J. Am. Chem. Soc., 1978, 100, 313; (d) G. A.
10 A referee suggested another possible mechanism for the formation of
4b as follows: 1) the interaction between a ketimine with an isocyanate
at the nitrogen atom on the pyridyl group; 2) the formation of a
pyridinium salt; 3) the formation of an enamine; 4) the interaction of
the enamine with the substituent, which is derived from the isocyanate,
on the nitrogen atom of the pyridyl group.
11 At 50 ◦C, unsaturated b-lactam derivative 3b and amide 4b were
obtained in 31 and 68% yields, respectively.
12 The structure of 3j was determined by comparison with the data
reported in ref 7e.
This journal is
The Royal Society of Chemistry 2006
Org. Biomol. Chem., 2006, 4, 203–205 | 205
©