by Nano research facility (NRF), Indian Institute of Technology
Delhi.
(
a)
Supplementary data
Supplementary data associated with this article can be found
in the online version, at http://dx.doi.org/.
References and notes
1
2
3
.
.
.
R.B. Merrifield, J. Am. Chem. Soc. 1963; 85:2149.
G. Barany, M.R. B, M. R.B., J. Am. Chem. Soc. 1977; 99:7363–7365.
(a) S. So, L.G. Peeva, E.W. Tate, R.J. Leatherbarrow, A.G. Livingston,
Chem. Commun. 2010; 46:2808–2810; (b) J. Bonnamour, T.X. Metro, J.
Martinez, F. Lamaty, Green Chem. 2013; 15:1116–1120; (c) P.C. De
Visser, M. Van Helden, D. V. Filippov, G.A. Van Der Marel, J.W.
Drijfhout, J.H. Van Boom, D. Noort, H.S. Overkleeft, Tetrahedron Lett.
(
b)
2
003; 44:9013–9016; (d) M. Mizuno, K. Goto, T. Miura, D. Hosaka, T.
Inazu, Chem. Commun. 2003; 8:972–973; (e) M. Mizuno, K. Goto, T.
Miura, T. Matsuura, T. Inazu, Tetrahedron Lett. 2004; 45:3425–3428.
(a) E. Bayer, Angew. Chemie Int. Ed. 1991; 30:113–129; (b) Y. Wang, G.
Zhang, H. Yan, Y. Fan, Z. Shi, Y. Lu, Q. Sun, W. Jiang, Y. Zheng, S. Li,
Z. Liu, Tetrahedron 2006; 62:4948–4953.
4
5
.
.
(a) W. Miao, T.H. Chan, J. Org. Chem. 2005; 70:3251–3255; (b) N.W.
Rainer Rudolph, Frank Bordusa US 2006/0149035 A1, 2006; (c) T.H.
Chan, M.J. Damha, W. Miao, R.A. Donga, X. He, US 2010/0041869 A1,
2
010; (d) S. Furukawa, H. Imai, US 8,691,941 B2, 2014; (e) C. Huo,
T.H. Chan, Chem. Soc. Rev. 2010; 39:2977–3006; (f) L. Chen, M. Zheng,
Y. Zhou, H. Liu, H. Jiang, Synth. Commun. 2008; 38:239–248; (g) B.
Maiti, K. Chanda, C.M. Sun, Org. Lett. 2009; 11:4826–4829.
(a) M. Erbeldinger, A.J. Mesiano, A.J. Russell, 2000; 6:1129–1131; (b)
H. Vallette, L. Ferron, G. Coquerel, A.C. Gaumont, J. C. Plaquevent,
Tetrahedron Lett. 2004; 45:1617–1619; (c) P. Petiot, C. Charnay, J.
Martinez, L. Puttergill, F. Galindo, F. Lamaty, E. Colacino, Chem.
Commun. 2010; 46:8842–8844; (d) X. He, T.H. Chan, Org. Lett. 2007;
9:1–38.
6
.
Figure 1. Kinetics of (a) Fmoc-Leu-OH loading on PSILs and (b) Fmoc-
Phe-OH on Leu-OH loaded PSILs; Reaction conditions: Temperature, 27°C;
Resin, 0.15 g; Fmoc-amino acid, 1.2 mmol, HBTU, 1.2 mmol; DIPEA, 2.4
mmol; 5 mL DMF.
7. H.J. Cho, S.M. Lee, S. Jung, T.K. Lee, H.J. Yoon, Y.S. Lee, Tetrahedron
Lett. 2011; 52:1459–1461.
reaction rate and higher loading efficiency. PS-TEA-NTf
showed higher loading efficiency as it contained three –OH
functionalities. However, the loading efficiency of the PS-TEA-
2
8
.
X. Chen, J. Sun, J. Wang, W. Cheng, Tetrahedron Lett. 2012; 53:2684–
688.
Leu-enkephalin: H NMR (400 MHz, DMSO-d ) δ(ppm): 0.91 [m, 6H,
2
1
9
.
6
2
NTf was not proportional to the number of –OH groups in
CH (Leu)], 1.25 [m, 1H, CH(Leu)], 1.52-1.66 [m, 2H, CH (Leu)], 2.68,
2.70, 3.01-3.16 [m, 4H, CH (Tyr and Phe)], 3.50-3.70 [m, 2H, α-H(Tyr
2
3
2
contrary to the PSILs containing a 2-butyl group as a spacer to
decrease the inter-chain interactions in between the two growing
peptide chains. The growth of the three simultaneous peptide
and Leu)], 3.84 [d, 4H, α-H(Gly
and Gly
.86 [m, 2H, aryl(Tyr)], 7.02 [d, 2H, aryl(Tyr)], 7.14 [m, 2H, aryl(Phe)],
)], 4.18 [m, 1H, α-H(Phe)], 6.54,
3
2
6
7
7
8
.27 [m, 2H, aryl(Phe)], 7.40 [t, 1H, aryl(Phe)], 7.53 [t, 1H, NH(Tyr)],
.70 [m, 1H, NH(Leu)], 7.94 [br, 1H, NH(Gly )], 8.12 [d, 1H, NH(Phe)],
.38 [br, 1H, NH(Gly )]. MALDI-TOF (m/z): calc. as 555.63 for
chains on the PS-TEA-NTf
chain interaction between the amino acids as evident from Figure
. Further, this faster kinetics and efficient loading can be
2
support results in increased inter-
3
2
+
1
C H N O [M+H] , found 555.18.
28 37 5 7
attributed to the flexible nature of these functionalized supports
with –OH groups on the side chains and hydrophobic anions
resulting in efficient biphasic reaction media.
10. M. Kim, Y.S. Park, D.S. Shin, S. Lee, Y.S. Lee, Tetrahedron Lett. 2012;
3:4576–4579.
1. B. Yoo, M.D. Pagel, Bioconjug. Chem. 2008; 18:903–911.
5
1
In conclusion, a series of multifunctional ILs with different
anionic entities were supported on PS resin and used in the
manufacture of di- and pentapeptides. The modification of the
resin supports with ILs containing –OH groups on the side chain
and hydrophobic anions played important role in the swelling
property of the polymer support. The kinetics of the first and
second amino acid attachment on the polymer support was
investigated and a model di- and pentapeptide was synthesized
using these PSILs to demonstrate the synthetic efficiency. The
inherent electrostatic interactions of the ILs was found to play
crucial role in controlling the conformation of the growing
peptide chain resulting in improved overall yield and purity of
the peptides. Overall, a new class of amine based ionic liquid
modified resin support is provided as a solution with new insights
to get rid of the persisting problems in peptide manufacture
processes.
Acknowledgments
Tanmoy Patra thanks the Council of Scientific and Industrial
Research (CSIR), India, for the senior research fellowship. The
authors also acknowledge the instrumentation facility provided