90
Page 16 of 17
Monpara, Kanthou, Tozer and Vavia (2018) 35:90
14. Thurston G, McLean JW, Rizen M, Baluk P, Haskell A, Murphy
TJ, et al. Liposomes target angiogenic endothelial cells in tumors
and chronic inflammation in mice. J Clin Invest. 1998;101(7):1401–
13.
15. Schmitt-Sody M, Strieth S, Krasnici S, Sauer B, Schulze B, Teifel
M, et al. Targeting therapy: paclitaxel encapsulated in cationic
liposomes improves antitumoral efficacy. Clin Cancer Res.
2003;9(6):2335–41.
16. Bocci G, Di Paolo A, Danesi R. The pharmacological bases of the
antiangiogenic activity of paclitaxel. Angiogenesis. 2013;16(3):481–
92.
17. Yang T, Cui F-D, Choi M-K, Cho J-W, Chung S-J, Shim C-K,
et al. Enhanced solubility and stability of PEGylated liposomal pac-
litaxel: in vitro and in vivo evaluation. Int J Pharm. 2007;338(1–2):
317–26.
18. Sofias AM, Dunne M, Storm G, Allen C. The battle of BNano^
paclitaxel. Adv Drug Deliv Rev. 2017;122:20–30.
19. Huynh L, Grant J, Leroux J-C, Delmas P, Allen C. Predicting the
solubility of the anti-cancer agent docetaxel in small molecule ex-
cipients using computational methods. Pharm Res. 2008;25(1):
147–57.
20. Xiang T-X, Anderson BD. Liposomal drug transport: a molecular
perspective from molecular dynamics simulations in lipid bilayers.
Adv Drug Deliv Rev. 2006;58(12–13):1357–78.
21. Stepniewski M, Pasenkiewicz-Gierula M, Róg T, Danne R,
Orlowski A, Karttunen M, et al. Study of PEGylated lipid layers
as a model for PEGylated liposome surfaces: molecular dynamics
simulation and Langmuir monolayer studies. Langmuir.
2011;27(12):7788–98.
22. Kang M, Loverde SM. Molecular simulation of the concentration-
dependent interaction of hydrophobic drugs with model cellular
membranes. J Phys Chem B. 2014;118(41):11965–72.
23. Jämbeck JP, Eriksson ES, Laaksonen A, Lyubartsev AP, Eriksson
LA. Molecular dynamics studies of liposomes as carriers for
photosensitizing drugs: development, validation, and simulations
with a coarse-grained model. J Chem Theory Comput.
2013;10(1):5–13.
24. Hristova K, Wimley WC. A look at arginine in membranes. J
Membr Biol. 2011;239(1–2):49–56.
25. Wang Z. Schotten-Baumann Reaction. In: Comprehensive
Organic Name Reactions and Reagents. John Wiley & Sons,
Inc.; 2010. p. 2536–2539.
33. Chen S-H, Lin T-L. 16. Colloidal solutions. In: Price DL, Sköld K,
editors. Methods in experimental physics: Elsevier; 1987. p. 489–
543.
34. Pedersen JS. Analysis of small-angle scattering data from colloids
and polymer solutions: modeling and least-squares fitting. Adv
Colloid Interf Sci. 1997;70:171–210.
335. Pedersen JS, Riekel C. Resolution function and flux at the sample
for small-angle X-ray scattering calculated in position–angle–
wavelength space. J Appl Crystallogr. 1991;24(5):893–909.
36. Bevington PR, Robinson DK, Blair JM, Mallinckrodt AJ, McKay
S. Data reduction and error analysis for the physical sciences.
Comput Phys. 1993;7(4):415–6.
37. Valster A, Tran NL, Nakada M, Berens ME, Chan AY, Symons M.
Cell migration and invasion assays. Methods. 2005;37(2):208–15.
38. Lovelock J, Bishop M. Prevention of freezing damage to living cells
by dimethyl sulphoxide. Nature. 1959;183(4672):1394–5.
40. Li Y-C, Rissanen S, Stepniewski M, Cramariuc O, Róg T, Mirza S,
et al. Study of interaction between PEG carrier and three relevant
drug molecules: piroxicam, paclitaxel, and hematoporphyrin. J
Phys Chem B. 2012;116(24):7334–41.
41. Vander Velde DG, Georg GI, Grunewald GL, Gunn CW,
Mitscher LA. " hydrophobic collapse" of taxol and Taxotere solu-
tion conformations in mixtures of water and organic solvent. J Am
Chem Soc. 1993;115(24):11650–1.
42. Stanton DT, Mattioni BE, Knittel JJ, Jurs PC. Development and
use of hydrophobic surface area (hsa) descriptors for computer-
assisted quantitative structure− activity and structure− property
relationship studies. J Chem Inf Comput Sci. 2004;44(3):1010–23.
43. Balasubramanian SV, Straubinger RM. Taxol-lipid interactions:
taxol-dependent effects on the physical properties of model mem-
branes. Biochemistry. 1994;33(30):8941–7.
44. Belsito S, Bartucci R, Sportelli L. Paclitaxel interaction with phos-
pholipid bilayers: high-sensitivity differential scanning calorimetric
study. Thermochim Acta. 2005;427(1–2):175–80.
45. Lian T, Ho RJ. Trends and developments in liposome drug delivery
systems. J Pharm Sci. 2001;90(6):667–80.
46. Zhao L, Feng S-S. Effects of cholesterol component on molecular
interactions between paclitaxel and phospholipid within the lipid
monolayer at the air–water interface. J Colloid Interface Sci.
2006;300(1):314–26.
26. Gao X, Huang L. A novel cationic liposome reagent for efficient
transfection of mammalian cells. Biochem Biophys Res Commun.
1991;179(1):280–5.
47. Demetzos C. Differential scanning calorimetry (DSC): a tool to
study the thermal behavior of lipid bilayers and liposomal stability.
Journal of liposome research. 2008;18(3):159–73.
27. Garlanda C, Parravicini C, Sironi M, De Rossi M, De Calmanovici
RW, Carozzi F, et al. Progressive growth in immunodeficient mice
and host cell recruitment by mouse endothelial cells transformed by
polyoma middle-sized T antigen: implications for the pathogenesis
of opportunistic vascular tumors. Proc Natl Acad Sci. 1994;91(15):
7291–5.
28. Zhang JA, Anyarambhatla G, Ma L, Ugwu S, Xuan T, Sardone T,
et al. Development and characterization of a novel Cremophor®
EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur J
Pharm Biopharm. 2005;59(1):177–87.
29. Chen D-B, T-z Y, Lu W-L, ZHANG Q. In vitro and in vivo study of
two types of long-circulating solid lipid nanoparticles containing
paclitaxel. Chem Pharm Bull. 2001;49(11):1444–7.
30. Aswal V, Small-angle GP. Neutron scattering diffractometer at
Dhruva reactor. Curr Sci. 2000;79(7):947–53.
48. Ladbrooke B, Chapman D. Thermal analysis of lipids, proteins and
biological membranes a review and summary of some recent stud-
ies. Chem Phys Lipids. 1969;3(4):304–56.
49. Taylor KM, Morris RM. Thermal analysis of phase transition be-
haviour in liposomes. Thermochim Acta. 1995;248:289–301.
50. Bernsdorff C, Reszka R, Winter R. Interaction of the anticancer
agent Taxol™(paclitaxel) with phospholipid bilayers. J Biomed
Mater Res. 1999;46(2):141–9.
51. Zhao L, Feng S-S, Kocherginsky N, Kostetski I. DSC and EPR
investigations on effects of cholesterol component on molecular
interactions between paclitaxel and phospholipid within lipid bilay-
er membrane. Int J Pharm. 2007;338(1–2):258–66.
52. McMullen TP, McElhaney RN. New aspects of the interaction of
cholesterol with dipalmitoylphosphatidylcholine bilayers as re-
vealed by high-sensitivity differential scanning calorimetry.
Biochimica et Biophysica Acta (BBA)-Biomembranes.
1995;1234(1):90–8.
31. Hayter J, Penfold J. Determination of micelle structure and charge
by neutron small-angle scattering. Colloid Polym Sci. 1983;261(12):
1022–30.
32. Kaler E. Small-angle scattering from colloidal dispersions. J Appl
Crystallogr. 1988;21(6):729–36.
53. Zhao L, Feng S-S. Effects of lipid chain length on molecular inter-
actions between paclitaxel and phospholipid within model
biomembranes. J Colloid Interface Sci. 2004;274(1):55–68.