Acknowledgements
8 (a) S. Jordens, G. De Belder, M. Lor, G. Schweitzer, M. Van der
Auweraer, T. Weil, E. Reuther, K. Mu
Photochem. Photobiol. Sci., 2003, 2, 177; (b) U. Hahn, M. Gorka,
F. Vogtle, V. Vicinelli, P. Ceroni, M. Maestri and V. Balzani,
Angew. Chem., Int. Ed., 2002, 41, 3595; (c) V. Vicinelli, P. Ceroni,
M. Maestri, V. Balzani, M. Gorka and F. Vogtle, J. Am. Chem.
¨
llen and F. C. De Schryver,
We would like to thank Susanna Bazzani, Giacomo Bergami-
ni, and Dr Stephan Bitter for useful discussions. This work has
been supported by FIRB (Manipolazione molecolare per
macchine nanometriche) and by the ‘‘Fonds der Chemischen
Industrie’’, for which we are very grateful.
¨
¨
Soc., 2002, 124, 6461; (d) M.-S. Choi, T. Aida, T. Yamazaki and I.
Yamazaki, Chem. Eur. J., 2002, 8, 2668; (e) J. M. Serin,
D. W. Brousmiche and J. M. J. Fre
605.
(a) M.-H. Xu, J. Lin, Q.-S. Hu and L. Pu, J. Am. Chem. Soc., 2002,
24, 14239; (b) V. J. Pugh, Q. S. Hu, X. Zuo, F. D. Lewis and L.
Pu, J. Org. Chem., 2001, 66, 6136; (c) V. Balzani, P. Ceroni, S.
´
chet, Chem. Commun., 2002,
2
9
References
1
1
(a) G. R. Newkome and F. Vo
Wiley-VCH, Weinheim, 2001; (b) Dendrimers and Other Dendritic
Polymers, ed. J. M. J. Frechet and D. A. Tomalia, Wiley, New
York, 2001.
¨
gtle, Dendrimers and Dendrons,
Gestermann, C. Kauffmann, M. Gorka and F. Vo
Commun., 2000, 853.
10 P. Furuta, J. Brooks, M. E. Thompson and J. M. J. Fre
Chem. Soc., 2003, 125, 13165.
¨
gtle, Chem.
´
´
chet, J. Am.
2
For some recent reviews, see: (a) D. Astruc, F. Lu and J. R.
Aranzaes, Angew. Chem., Int. Ed., 2005, 44, 7852; (b) P. A. Chase,
R. J. M. Klein Gebbink and G. van Koten, J. Organomet. Chem.,
11 M. Montalti, A. Credi, L. Prodi and M. T. Gandolfi, Handbook of
Photochemistry, Taylor & Francis, CRC Press, Boca Raton, FL,
USA, 3rd edn, 2006.
2004, 689, 4016; (c) W. Ong, M. Gomez-Kaifer and A. E. Kaifer,
Chem. Commun., 2004, 1677; (d) M. Ballauff and C. N. Likos,
Angew. Chem., Int. Ed., 2004, 43, 2998; (e) A.-M. Caminade and J.-
P. Majoral, Acc. Chem. Res., 2004, 37, 341.
For recent developments in dendrimer chemistry, see: Special
Issue: Dendrimers and Dendritic Polymers, ed. D. A. Tomalia
´
and J. M. J. Frechet, Prog. Polym. Sci., 2005, 30(3–4).
12 This value has been estimated by the molar absorption coefficient
of the second generation dendron analogous to D2, but terminated
by benzene instead of naphthalene since at 275 nm the benzene
contribution to the absorption is negligible.
13 This value is the molar absorption coefficient of 2-methyl naphtha-
lene.
3
4
See, for example: (a) P. Ceroni, G. Bergamini, F. Marchioni and V.
Balzani, Prog. Polym. Sci., 2005, 30, 453; (b) F. C. De Schryver, T.
Vosch, M. Cotlet, M. Van der Auweraer, K. Mullen and J.
¨
Hofkens, Acc. Chem. Res., 2005, 38, 514; (c) V. Balzani, P. Ceroni,
M. Maestri, C. Saudan and V. Vicinelli, Top. Curr. Chem., 2003,
228, 159; (d) J.-F. Nierengarten, N. Armaroli, G. Accorsi, Y. Rio
and J. F. Eckert, Chem. Eur. J., 2003, 9, 36.
14 (a) A. A. Lamola and G. S. Hammond, J. Chem. Phys., 1965,
43, 2129; (b) D. J. Morantz and J. C. Wright, J. Chem. Phys., 1971,
54, 692; (c) J. F. Arnett and S. P. McGlynn, J. Phys. Chem.,
1975, 79, 626; (d) T.-S. Fang, R. E. Brown, C. L. Kwan and L. A.
Singer, J. Phys. Chem., 1978, 82, 2489; (e) L. Flamigni, F.
Barigelletti, S. Dellonte and G. Orlandi, J. Photochem., 1983, 21,
237.
5
(a) G. Bergamini, P. Ceroni, V. Balzani, L. Cornelissen, J. van
Heyst, S.-K. Lee and F. Vogtle, J. Mater. Chem., 2005, 15, 2959;
gtle, M.
15 In the case of G0 the emission is so weak that a careful analysis of
emission band shape is precluded.
16 G. Bergamini, P. Ceroni, M. Maestri, V. Balzani, S.-K. Lee and F.
¨
b) F. Pina, P. Passaniti, M. Maestri, V. Balzani, F. Vo
(
¨
Gorka, S.-K. Lee, J. Van Heyst and H. Fakhrnabavi, Chem-
PhysChem, 2004, 5, 473; (c) C. Saudan, V. Balzani, P. Ceroni,
¨
Vogtle, Photochem. Photobiol. Sci., 2004, 3, 898.
17 A careful estimation of the emission quantum yield correspond-
ing to the band with maximum at 495 nm in G2 is precluded by the
tail of the naphthalene emission and by the very low emission
quantum yield of the dimethoxybenzil chromophore. This uncer-
tainty is reflected in the efficiency of the energy transfer process
M. Gorka, M. Maestri, V. Vicinelli and F. Vo
003, 59, 3845; (d) T. H. Ghaddar, J. K. Whitesell and M. A. Fox,
J. Phys. Chem. B, 2001, 105, 8729; (e) M. Maus, S. Mitra, M. Lor,
J. Hofkens, T. Weil, A. Herrmann, K. Mullen and F. C. De
¨
gtle, Tetrahedron,
2
¨
Schryver, J. Phys. Chem. A, 2001, 105, 3961; (f) L. Brauge, A.-
M. Caminade, J.-P. Majoral, S. Slomkowski and M. Wolszczak,
Macromolecules, 2001, 34, 5599; (g) S. F. Swallen, Z. Zhu, J. S.
Moore and R. Kopelman, J. Phys. Chem. B, 2000, 104, 3988; (h) L.
A. Baker and R. M. Crooks, Macromolecules, 2000, 33, 9034.
(a) F. Loiseau, S. Campagna, A. Hameurlaine and W. Dehaen, J.
Am. Chem. Soc., 2005, 127, 11352; (b) M. Cotlet, T. Vosch, S.
discussed in the text. The value of R
tween naphthalene and dimethoxybenzil, estimated according to
Forster theory, is approximately nm, suggesting that
energy transfer process could be very efficient in such crowded
structures.
0
for energy transfer be-
¨
2
6
18 M. V. Encinas and J. C. Scaiano, J. Am. Chem. Soc., 1979, 101,
7740.
Habuchi, T. Weil, K. Mu
¨
llen, J. Hofkens and F. De Schryver, J.
19 N. J. Turro, Modern Molecular Photochemistry, University Science
Book, Sausalito, CA, USA, 1991.
20 A delayed fluorescence obtained by triplet–triplet annihilation can
be excluded because of the low sample concentration and low
intensity of the lamp source.
Am. Chem. Soc., 2005, 127, 9760; (c) J.-P. Cross, M. Lauz, P. D.
Badger and S. Petoud, J. Am. Chem. Soc., 2004, 126, 16278; (d) G.
Bergamini, C. Saudan, P. Ceroni, M. Maestri, V. Balzani, M.
Gorka, S.-K. Lee, J. van Heyst and F. Vo
2004, 126, 16466.
¨
gtle, J. Am. Chem. Soc.,
21 C. Ko
4015.
22 P. Ceroni, V. Vicinelli, M. Maestri, V. Balzani, W. M. Mu
Muller, U. Hahn, F. Osswald and F. Vogtle, New J. Chem., 2001,
25, 989.
sa, I. Lukac and R. G. Weiss, Macromolecules, 2000, 33,
´ ´ ˇ
7
(a) W.-S. Li, K. S. Kim, D.-L. Jiang, H. Tanaka, T. Kawai, J. H.
Kwon, D. Kim and T. Aida, J. Am. Chem. Soc., 2006, 128, 10527;
¨
ller, U.
(
b) A. Petrella, J. Cremer, L. De Cola, P. Baeuerle and R. M.
¨
¨
Williams, J. Phys. Chem. A, 2005, 109, 11687; (c) K. R. J. Thomas,
A. L. Thompson, A. V. Sivakumar, C. J. Bardeen and S. Thayu-
manavan, J. Am. Chem. Soc., 2005, 127, 373; (d) R. Gronheid, A.
¨
23 M. Plevoets, F. Vogtle, L. De Cola and V. Balzani, New J. Chem.,
1999, 63.
Stefan, M. Cotlet, J. Hofkens, J. Qu, K. Mu
¨
llen, M. Van der
24 J. N. Demas and G. A. Crosby, J. Phys. Chem., 1971, 75, 991.
25 I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic
Molecules, Academic Press, London, 1965.
26 (a) E. Fischer, EPA Newslett., 1984, 33; (b) C. G. Hatchard and C.
A. Parker, Proc. R. Soc. London, Ser. A, 1956, 235, 518.
Auweraer, J. W. Verhoeven and F. C. De Schryver, Angew. Chem.,
Int. Ed., 2003, 42, 4209; (e) T. H. Ghaddar, J. F. Wishart, D. W.
Thompson, J. K. Whitesell and M. A. Fox, J. Am. Chem. Soc.,
2002, 124, 8285.
1
258 | New J. Chem., 2007, 31, 1250–1258
This journal is ꢀc the Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2007