F. Verpoort, J. C. Martins et al.
FULL PAPER
1D and 2D H, 13C and 31P NMR spectra were recorded on either
1
Acknowledgments
a Bruker Avance 300 MHz spectrometer (for 31P only using a 5 mm
BBO probe), Bruker DRX 500 MHz spectrometer (5 mm TXI
probe) and a Bruker Avance II 700 MHz NMR spectrometer
(5 mm TXI probe). The latter was mainly used to validate assign-
ments made at 500 MHz that were ambiguous due to insufficient
resolution. ROESY spectra were recorded using the off-resonance
scheme with an angle of 60°.[17] Chemical shift values (δ) are given
in parts per million (ppm) using the residual C6D5H as secondary
internal calibration reference. For 31P, H3PO4 was used as external
reference. All kinetic experiments were performed on a Varian
Unity 300 MHz spectrometer.
R. D. and F. V. thank Ralf Karch and Roland Winde of UM-
ICORE AG for a generous gift of Neolyst M1 and Neolyst M2.
The IWT Flanders is thanked for a PhD grant to P. M. S. H.
J. C. M. and F. V. thank the FWO for financial support and several
NMR equipment grants (G.0036.00N, G.0365.03). The 700 MHz
equipment of the Interuniversitary NMR Facility was financed by
Ghent University, the Free University of Brussels (VUB) and the
University of Antwerp via the “Zware Apparatuur” Incentive of
the Flemish Government. S. M. and F. V. gratefully acknowledge
the Research Fund of Ghent University (BOF) for the financial
support.
(SIMe)(PCy3)Cl2Ru(3-phenylindenylid-1-ene) (4a): A flame-dried
reaction flask is charged with 286.0 mg (0.3098 mmol) of com-
pound 2a and 159.3 mg (0.3568 mmol; 1.15 equiv.) of the penta-
fluorobenzene adduct 5b. The mixture is dissolved in 10 mL of tol-
uene, stirred and heated to 100 °C for 1.5 h. The reaction mixture
is cooled down to room temperature and filtered off. All volatiles
are removed by evaporation and the residue is suspended in 5 mL
of MeOH. After filtration, the residue is washed with another 5 mL
of MeOH and dried in vacuo to afford 160.5 mg (0.1743 mmol;
56%) of 4a as a red powder. The NMR spectroscopic data is avail-
able in Tables 1 and 2 in the main text.
[1] For selected reviews on olefin metathesis, see a) T. M. Trnka,
R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18–29; b) R. H.
Grubbs, Handbook of Metathesis, Wiley-VCH, Weinheim (Ger-
many), 2003; c) S. J. Connon, S. Blechert, Angew. Chem. 2003,
115, 1944–1968; d) D. Astruc, New J. Chem. 2005, 29, 42–56.
[2] a) P. Schwab, M. B. France, J. W. Ziller, R. H. Grubbs, Angew.
Chem. Int. Ed. Engl. 1995, 34, 2039–2041; b) P. Schwab, R. H.
Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996, 118, 100–110; c)
M. Scholl, T. M. Trnka, J. P. Morgan, R. H. Grubbs, Tetrahe-
dron Lett. 1999, 40, 2247–2250; d) T. Weskamp, W. C. Schat-
tenmann, M. Spiegler, W. A. Herrmann, Angew. Chem. Int. Ed.
1998, 37, 2490–2493; e) M. S. Sanford, J. A. Love, R. H.
Grubbs, Organometallics 2001, 20, 5314–5318; f) J. Huang,
E. D. Stevens, S. P. Nolan, J. L. Peterson, J. Am. Chem. Soc.
1999, 121, 2674–2678; g) J. Huang, H.-J. Schanz, E. D. Stevens,
S. P. Nolan, Organometallics 1999, 18, 5375–5380; h) J. C. Con-
rad, G. P. A. Yap, D. E. Fogg, Organometallics 2003, 22, 1986–
1988; i) T. M. Trnka, J. P. Morgan, M. S. Sanford, T. E.
Wilhelm, M. Scholl, T.-L. Choi, S. Ding, M. W. Day, R. H.
Grubbs, J. Am. Chem. Soc. 2003, 125, 2546–2558.
[3] a) J. S. Kingsbury, J. P. A. Harrity, P. J. Bonitatebus, A. H. Hov-
eyda, J. Am. Chem. Soc. 1999, 121, 791–799; b) S. B. Garber,
J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, J. Am. Chem. Soc.
2000, 122, 8168–8179.
[4] a) R. Bujok, M. Bieniek, M. Masnyk, A. Michrowska, A. Sa-
rosiek, H. Stepowska, D. Arlt, K. Grela, J. Org. Chem. 2004,
69, 6894–6896; b) A. Michrowksa, R. Bujok, S. Harutyunyan,
V. Sashuk, G. Dolgonos, K. Grela, J. Am. Chem. Soc. 2004,
126, 9318–9325.
(SIMe)(PPh3)Cl2Ru(3-phenylindenylid-1-ene) (4b). Method A: Un-
der an inert atmosphere of Ar, 35.1 mg PPh3 (0.134 mmol;
1.10 equiv.) is added to 87.3 mg 4c (0.121 mmol) in dichlorometh-
ane (10 mL) and the mixture is stirred for 30 min at room tempera-
ture. After evaporation of all volatiles, the residue is suspended in
n-hexane and filtered off. Thoroughly washing with 3ϫ5 mL n-
hexane and drying in vacuo yielded 57.7 mg of 4b (0.064 mmol;
53%) as a deep red powder.
Method B: Under an inert atmosphere of Ar, a flame-dried reaction
flask is charged with 275.3 mg (0.3105 mmol) of complex 2b and
159.4 mg (0.3571 mmol; 1.15 equiv.) of the pentafluorobenzene ad-
duct 5b. The mixture is dissolved in 10 mL of toluene, stirred and
heated to 100 °C for 1 h. The reaction mixture is cooled down to
room temperature and filtered off. All volatiles are removed by
evaporation and the residue is suspended in 5 mL of MeOH. After
filtration, the residue is washed with another 5 mL of MeOH and
dried in vacuo to afford 211.7 mg (0.2299 mmol; 74%) of 4b. The
NMR spectroscopic data is available in Table 1 and in the main
text.
[5] a) S. Gessler, S. Randl, S. Blechert, Tetrahedron Lett. 2000, 41,
9973–9976; b) H. Wakamatsu, S. Blechert, Angew. Chem. Int.
Ed. 2002, 41, 2403–2405; c) H. Wakamatsu, S. Blechert, Angew.
Chem. Int. Ed. 2002, 41, 794–796.
(SIMe)(py)Cl2Ru(3-phenylindenylid-1-ene) 4c: 152.0 mg (0.165
mmol) of complex 4a is dissolved in pyridine (2.0 mL) and stirred
at room temperature for 2 h. A brown precipitate is formed upon
addition of n-hexane (10 mL) and subsequent cooling to –40 °C.
Filtration of the precipitate, washing with 3ϫ5 mL n-hexane and
drying in vacuo yielded 87.3 mg (0.121 mmol; 73%) of compound
4c as an orange powder. The NMR spectroscopic data is available
in Tables 1 and 3 in the main text.
[6]
S. Monsaert, R. Drozdzak, V. Dragutan, I. Dragutan, F. Ver-
poort, Eur. J. Inorg. Chem. 2008, 3, 432–440.
[7]
a) L. Jafarpour, H.-J. Schanz, E. D. Stevens, S. P. Nolan, Orga-
nometallics 1999, 18, 5416–5419; b) A. Fürstner, O. Guth, A.
Düffels, G. Seidel, M. Liebl, B. Gabor, R. Mynott, Chem. Eur.
J. 2001, 7, 4811–4820; c) E. A. Shaffer, C.-L. Chen, A. M. Be-
atty, E. J. Valente, H.-J. Schanz, J. Organomet. Chem. 2007,
692, 5221–5233.
H. Clavier, S. P. Nolan, Chem. Eur. J. 2007, 13, 8029–8036.
I. C. Stewart, T. Ung, A. A. Pletnev, J. M. Berlin, R. H.
Grubbs, Y. Schrodi, Org. Lett. 2007, 9, 1589–1592.
a) T. M. Trnka, E. L. Dias, M. W. Day, R. H. Grubbs, ARKI-
VOC 2002, 13, 28–41; b) H. Clavier, J. L. Petersen, S. P. Nolan,
J. Organomet. Chem. 2006, 691, 5444–5447.
Monitoring ROMP of cis,cis-Cycloocta-1,5-diene (COD, 18): An
NMR tube is charged with the appropriate amount of catalyst,
dissolved in 0.60 mL of CDCl3. 0.10 mL of cis,cis-cycloocta-1,5-
diene is added, the NMR tube is closed and the conversion is deter-
mined by integration of the olefinic 1H signals of the formed poly-
mer and the consumed monomer.
[8]
[9]
[10]
Monitoring RCM of Diethyl Diallylmalonate (6) and N,N-Diallyl-
tosylamide (8): An NMR tube is charged with the appropriate
amount of catalyst, dissolved in 0.60 mL of CDCl3. Next 0.10 mL
of the substrate is added, the NMR tube is closed and the conver-
sion is determined by integration of the allylic 1H signals of the
formed product and the consumed substrate.
[11]
[12]
[13]
T. Ritter, A. Hejl, A. G. Wenzel, T. W. Funk, R. H. Grubbs,
Organometallics 2006, 25, 5740–5745.
B. Schmidt, M. Pohler, B. Costisella, J. Org. Chem. 2004, 69,
1421–1424.
M. S. Sanford, J. A. Love, R. H. Grubbs, J. Am. Chem. Soc.
2001, 123, 6543–6554.
664
www.eurjoc.org
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2009, 655–665