RSC Advances
Paper
this question, the mice administrated APAP overdose
(400 mg kgꢀ1) were employed to monitor ONOOꢀ formation in
situ. Six hours aer administrated APAP overdose, living heart
tissues were perfused with BTPB (1.0 mM) in saline for 3 min
under anesthesia. Mouse livers were then excised and cryosec-
tioned at 10 mm intervals for confocal imaging and hematoxylin
and eosin (HE) staining. The mice without APAP administration
were perfused with BTPB as the control.
5 M. R. McGill and H. Jaeschke, Pharm. Res., 2013, 30, 2174–
2187.
6 H. Jaeschke, M. R. McGill and A. Ramachandran, Drug
Metab. Rev., 2012, 44, 88–106.
7 J. A. Hinson, S. L. Pike, N. R. Pumford and P. R. Mayeux,
Chem. Res. Toxicol., 1998, 11, 604–607.
8 T. R. Knight, A. Kurtz, M. L. Bajt, J. A. Hinson and
H. Jaeschke, Toxicol. Sci., 2001, 62, 212–220.
9 S. Bartesaghi, G. Ferrer-Sueta, G. Peluffo, V. Valez, H. Zhang,
B. Kalyanaraman and R. Radi, Amino Acids, 2007, 32, 501–
515.
As shown in Fig. 5, HE staining of liver sections indicate the
substantial centrilobular necrosis 6 hours aer APAP adminis-
tration, but no necrosis is observed in the control group without
APAP administration, suggesting that APAP overdose induces 10 R. Radi, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 4003–4008.
liver injury, which is consistent with those studies.32,33 Then 11 R. Radi, Acc. Chem. Res., 2013, 46, 550–559.
´
liver sections were monitored using a confocal microscope over 12 C. Batthyany, S. Bartesaghi, M. Mastrogiovanni, A. Lima,
the wavelength range of 417–477 nm with an excitation wave-
length at 408 nm. Without APAP administration no uores-
V. Demicheli and R. Radi, Antioxid. Redox Signaling, 2017,
26, 313–328.
cence in the liver sections was observed, while strong blue 13 R. Radi, J. Biol. Chem., 2013, 288, 26464–26472.
uorescence in the centrilobular regions was imaged aer 14 Q. Zhang, N. Zhang, Y. T. Long, X. Qian and Y. Yang,
treatment with overdose APAP, which correlated well with the
areas of necrosis. This result indicates the generation of 15 D. Yang, H. L. Wang, Z. N. Sun, N. W. Chung and J. G. Shen,
ONOOꢀ during APAP-induced liver injury, which is the rst
J. Am. Chem. Soc., 2006, 128, 6004–6005.
direct evidence provided by our study. Also, these observations 16 Z. N. Sun, H. L. Wang, F. Q. Liu, P. K. H. Tam and D. Yang,
suggest that BTPB has satisfactory cell permeability and is well- Org. Lett., 2009, 11, 1887–1890.
Bioconjugate Chem., 2016, 27, 341–353.
retained during histological sample preparation and sensitive 17 T. Peng and D. Yang, Org. Lett., 2010, 12, 4932–4935.
enough to visualize endogenous ONOOꢀ in live tissues.
18 J. Zielonka, A. Sikora, J. Joseph and B. Kalyanaraman, J. Biol.
Chem., 2010, 285, 14210–14216.
19 W. Zhou, Y. Cao, D. Sui and C. Lu, Anal. Chem., 2016, 88,
2659–2665.
Conclusions
20 Z. Wang, X. Teng and C. Lu, Anal. Chem., 2015, 87, 3412–
3418.
21 A. Sikora, J. Zielonka, M. Lopez, A. Dybala-Defratyka,
J. Joseph, A. Marcinek and B. Kalyanaraman, Chem. Res.
Toxicol., 2011, 24, 687–697.
22 A. Sikora, J. Zielonka, M. Lopez, J. Joseph and
B. Kalyanaraman, Free Radical Biol. Med., 2009, 47, 1401–
1407.
23 J. Zielonka, A. Sikora, M. Hardy, J. Joseph, B. P. Dranka and
B. Kalyanaraman, Chem. Res. Toxicol., 2012, 25, 1793–1799.
24 R. Hu, J. Feng, D. Hu, S. Wang, S. Li, Y. Li and G. Yang,
Angew. Chem., Int. Ed., 2010, 49, 4915–4918.
25 H. W. Chen, Y. Xing and Y. Pang, Org. Lett., 2011, 13, 1362–
1365.
In summary, we present herein a ratiometric uorescent probe
for the highly sensitive and selective detection and hepatic
imaging of ONOOꢀ aer APAP overdose. This probe was
designed based on a ONOOꢀ specic reaction with the boronic
acid group. Our study provided the direct evidence for sup-
porting the generation of ONOOꢀ in APAP-induced liver injury.
We believe that the probe with excellent spectroscopic proper-
ties will nd its applications in understanding the actions of
ONOOꢀ in vivo.
Conflicts of interest
The authors declare no conicts of interest.
26 P. C. Sharma, A. Sinhmar, A. Sharma, H. Rajak and
D. P. Pathak, J. Enzyme Inhib. Med. Chem., 2013, 28, 240–266.
27 R. D. Taylor, M. MacCoss and A. D. Lawson, J. Med. Chem.,
2014, 57, 5845–5859.
28 A. B. Draganov, K. Wang, J. Holmes, K. Damera, D. Wang,
C. Dai and B. Wang, Chem. Commun., 2015, 51, 15180–15183.
29 M. A. Chari, D. Shobha and T. Sasaki, Tetrahedron Lett., 2011,
52, 5575–5580.
Acknowledgements
We acknowledge the National Natural Science Foundation of
China (Grant No. 81272448).
Notes and references
1 D. W. Kaufman, J. P. Kelly, L. Rosenberg, T. E. Anderson and 30 M. M. Henary and C. J. Fahrni, J. Phys. Chem. A, 2002, 106,
A. A. Mitchell, J. Am. Med. Assoc., 2002, 287, 337–344.
5210–5220.
2 D. S. Budnitz, M. C. Lovegrove and A. E. Crosby, Am. J. Prev. 31 J. E. Kwon and S. Y. Park, Adv. Mater., 2011, 23, 3615–3642.
Med., 2011, 40, 585–592.
32 P. James, L. A. MacMillan-Crow and J. A. Hinson, J.
Pharmacol. Exp. Ther., 2012, 340, 134–142.
33 C. Saito, C. Zwingmann and H. Jaeschke, Hepatology, 2010,
51, 246–254.
3 P. Nourjah, S. R. Ahmad, C. Karwoski and M. Willy,
Pharmacoepidemiol. Drug Saf., 2006, 15, 398–405.
4 W. M. Lee and S. Respir, Crit. Care Med., 2012, 33, 36–45.
6514 | RSC Adv., 2019, 9, 6510–6514
This journal is © The Royal Society of Chemistry 2019