E. Callens et al. / Tetrahedron Letters 49 (2008) 3709–3712
3711
In conclusion, we have shown that bismuth-catalyzed
benzylic oxidation most reasonably proceeds via the for-
mation of the radical of the stoichiometric oxidant, t-butyl
hydroperoxide and benzylic radicals. In addition, we also
report the first examples of two modestly soluble bismuth
picolinate complexes, which may be involved in the cata-
lytic cycle.
Acknowledgements
We thank GlaxoSmithKline for the generous endow-
ment (to A.G.M.B.) and for research support, the Royal
Society and the Wolfson Foundation for a Royal Society
Wolfson Research Merit Award (to A.G.M.B.), the Wolf-
son Foundation for establishing the Wolfson Centre for
Organic Chemistry in Medical Sciences at Imperial College
London, the Engineering and Physical Sciences Research
Council for the generous support of our studies and the
Thorpe Bequest for a studentship (to E.C.). We thank R.
Murray McKinnell for developing the improved procedure
for the preparation of Bi(OEt)3.
Fig. 2. The molecular structure of the complex anion present in the
crystals of 14.
1
9
out the substrate present. After considerable efforts, we
isolated a novel polymeric complex, the structure of which
was determined by X-ray crystallography (Fig. 3).
The X-ray analysis of crystals 15 showed only three
picolinate ligands per bismuth (cf. four in 14), and so there
is no need for any additional cation; the coordination at
the metal is again bi-capped trigonal prismatic (see Fig.
S7). The structure is an extended coordination polymer
Supplementary data
(
Fig. 3) with ligand bridges between the adjacent bismuth
Supplementary data (full details of the X-ray crystal
centers (cf. the sodium bridges in 14). The bismuth has
an oxidation state of three and each metal is coordinated
by three picolinate ligands.
Interestingly, when the benzylic oxidation reaction was
carried out using complex 15 in the presence of tetrahydro-
naphthalene, pyridine/acetic acid and t-BuOOH, a-tetra-
lone was obtained in 76% yield, which is similar to the
yield from the usual oxidation reaction. This result is con-
sistent with picolinic acid acting as an inner sphere ligand
for bismuth in our benzylic oxidation reactions.
References and notes
1
. Sheldon, R. A.; Kochi, J. K. In Metal-Catalyzed Oxidation of Organic
Compounds; Academic Press: New York, 1981.
2
. Hudlicky, M. Oxidations in Organic Chemistry; ACS Monograph 186;
American Chemical Society: Washington, DC, 1990.
. Lei, P.; Alper, H. J. Mol. Catal. 1990, 61, 51.
3
4
. (a) Muzart, J.; Ajjou, A. N. A. J. Mol. Catal. 1991, 66, 155; (b)
Muzart, J. Tetrahedron Lett. 1987, 28, 2131; (c) Muzart, J. Tetra-
hedron Lett. 1986, 27, 3139.
5
6
. Lee, N. H.; Lee, C.-S.; Jung, D.-S. Tetrahedron Lett. 1998, 39, 1385.
. Catino, A. J.; Nichols, J. M.; Choi, H.; Gottipamula, S.; Doyle, M. P.
Org. Lett. 2005, 7, 5167.
7
8
9
. Murahashi, S.-I.; Komiya, N.; Oda, Y.; Kuwabara, T.; Naota, T. J.
Org. Chem. 2000, 65, 9186.
. Gupta, M.; Paul, S.; Gupta, R.; Loupy, A. Tetrahedron Lett. 2005, 46,
4
957.
. (a) Kim, S. S.; Sar, S. K.; Tamrakar, P. Bull. Korean Chem. Soc. 2002,
3, 937; (b) Nakanishi, M.; Bolm, C. Adv. Synth. Catal. 2007, 861.
2
1
0. (a) Ueyama, N.; Yoshinaga, N.; Okamura, T.; Zaima, H.; Nakamura,
A. J. Mol. Catal. 1991, 64, 247; (b) Khan, A. T.; Goswami, P.;
Choudhury, L. H. Tetrahedron Lett. 2006, 47, 2751; (c) Shaikh, T. M.
A.; Emmanuvel, L.; Sudalai, A. J. Org. Chem. 2006, 71, 5043; (d)
Silvestre, S. M.; Salvador, J. A. R. Tetrahedron 2007, 63, 2439.
1. (a) Postel, M.; Dunach, E. Coord. Chem. Rev. 1996, 155, 127; (b)
Leonard, N. M. A.; Wieland, L. C.; Mohan, R. S. Tetrahedron 2002,
1
5
8, 8373.
1
2. Bonvin, Y.; Callens, E.; Larrosa, I.; Henderson, D.; Burton, A. J.;
Barrett, A. G. M. Org. Lett. 2005, 7, 4549.
1
3. (a) Bowry, V. W.; Lusztyk, J.; Ingold, K. U. J. Chem. Soc., Chem.
Commun. 1990, 923; (b) Ajjou, A. N.; Riahi, A.; Chatterjee, D.; J.
Muzart Catal. Commun. 2006, 7, 563.
Fig. 3. Part of one of the extended polymer chains present in the crystals
of 15.