RSC Advances
Paper
Notes and references
1 (a) Y.-S. Chong, S. Anwar and K. Chen, Mini-Rev. Org. Chem.,
2018, 15, 364; (b) D. Jo and S. Han, Chem. Commun., 2018, 54,
6750; (c) A. Quintavalla, Curr. Med. Chem., 2018, 25, 917; (d)
E. Chupakhin, O. Babich, A. Prosekov, L. Asyakina and
M. Krasavin, Molecules, 2019, 24, 4165; (e) S. Mandal and
B. Thirupathi, Org. Biomol. Chem., 2020, 18, 5287.
Scheme 1 Scaled-up version of synthesis of 3a.
2 For selected examples, see: (a) K. Ding, Z. Han and Z. Wang,
Chem.–Asian J., 2009, 4, 32; (b) X.-Y. Ye, Z.-Q. Liang, C. Jin,
Q.-W. Lang, G.-Q. Chen and X. Zhang, Chem. Commun.,
2021, 57, 195; (c) W. Guo, Q. Liu, J. Jiang and J. Wang, Org.
Lett., 2020, 22, 3110; (d) X. Xie, W. Huang, C. Peng and
B. Han, Adv. Synth. Catal., 2018, 360, 194.
Scheme 2 Proposed mechanism of the double [3 + 2] cycloaddition.
3 (a) J. Sperry, Y.-C. Liu and M. A. Brimble, Org. Biomol. Chem.,
2010, 8, 29; (b) R. Pawlowski, P. Skorka and M. Stodulski,
Adv. Synth. Catal., 2020, 362, 4462.
4 M. A. Rizzacasa and A. Pollex, Org. Biomol. Chem., 2009, 7, 1053.
5 (a) A. Natarajan, K. Raju Suresh, I. A. Abdulrahman and
P. Subbu, Curr. Org. Chem., 2013, 17, 1929; (b) G. P. Savage,
Curr. Org. Chem., 2010, 14, 1478.
To further exhibit the synthetic utility for spirocyclic
compounds, under the optimized conditions, a gram scale
experiment between 4 mmol of hydrazonyl chloride 1a and
6 mmol of CS2 proceeded smoothly to afford the desired
product 3a without a signicant loss of efficiency (1.670 g, in
90% yield) (Scheme 1). The easy scale-up of this process shows
the reaction to be a practical tool for the synthesis of structurally
diversied natural product-like molecules possessing privileged
scaffold for potential application in biomedical research and
other research elds.
As shown in Scheme 2, a plausible mechanism was
proposed. Firstly, the nitrilimine intermediate 4 generated in
situ from the corresponding hydrazonyl halide 1 via eliminating
of HCl in the presence of a base. Then, the nitrilimine 4 reacts
with CS2 through the double 1,3-dipolar cycloaddition reaction
to give the desired product 3.
In conclusion, we have developed an efficient and simple
method to synthesize a broad range of diverse spiro[4.4]thiadiazole
derivatives in high yields (up to 96%) through the double 1,3-
dipolar cycloaddition of nitrilimines generated in situ with CS2.
This reaction proceeds with readily available starting materials,
transition-metal free, the experimental simplicity, easy purica-
tion, and mild reaction conditions make this procedure highly
appropriate for the synthesis of spiro[4.4]thiadiazole derivatives.
6 T. Sarkar, B. K. Das, K. Talukdar, T. A. Shah and
T. Punniyamurthy, ACS Omega, 2020, 5, 26316.
7 (a) J. Bariwal, L. G. Voskressensky and E. V. Van der Eycken,
Chem. Soc. Rev., 2018, 47, 3831; (b) K. P. Melnykov and
S. V. Ryabukhin, Chem. Heterocycl. Compd., 2020, 56, 1411.
8 (a) H. Liu, H. Jia, B. Wang, Y. Xiao and H. Guo, Org. Lett.,
2017, 19, 4714; (b) M. A. Arai, T. Arai and H. Sasai, Org.
Lett., 1999, 1, 1795.
9 (a) R. Narayan, M. Potowski, Z.-J. Jia, A. P. Antonchick and
H. Wadmann, Acc. Chem. Res., 2014, 47, 1296; (b) C. Najera,
J. M. Sansano and M. Yus, Org. Biomol. Chem., 2015, 13,
8596; (c) K. Martina, S. Tagliapietra, V. V. Veselov and
G. Cravotto, Front. Chem., 2019, 7, 1; (d) T. Hashimoto and
K. Maruoka, Chem. Rev., 2015, 115, 5366; (e) N. Thanh
Binh, A. Martel, C. Gaulon-Nourry, R. Dhal and
G. Dujardin, Org. Prep. Proced. Int., 2012, 44, 1; (f) C. Najera
and J. M. Sansano, Org. Biomol. Chem., 2009, 7, 4567.
10 (a) Y. Zeng, L. Zhou, X. Gao, Y. Wu, Q. Wang, Z. Guo,
J. Huang and H. Guo, J. Heterocycl. Chem., 2018, 55, 2781;
(b) I. Yavari, Z. Taheri, M. Naeimabadi, S. Bahemmat and
M. R. Halvagar, Synlett, 2018, 29, 918; (c) G. Wang, X. Liu,
T. Huang, Y. Kuang, L. Lin and X. Feng, Org. Lett., 2013,
15, 76; (d) V. V. Voronin, M. S. Ledovskaya, E. G. Gordeev,
K. S. Rodygin and V. P. Ananikov, J. Org. Chem., 2018, 83,
3819; (e) Y. Su, Y. Zhao, B. Chang, X. Zhao, R. Zhang,
X. Liu, D. Huang, K.-H. Wang, C. Huo and Y. Hu, J. Org.
Chem., 2019, 84, 6719; (f) H. Gazzeh, S. Boudriga, M. Askri,
A. Khatyr, M. Knorr, C. Strohmann, C. Golz, Y. Rousselin
and M. M. Kubicki, RSC Adv., 2016, 6, 49868; (g)
A. Alizadeh, L. Moa and L.-G. Zhu, Synlett, 2016, 27, 595;
(h) A. Alizadeh and L. Moa, Helv. Chim. Acta, 2016, 99,
457; (i) A. Alizadeh and A. Roosta, Synlett, 2016, 27, 2455;
(j) S.-E. Tsai, W.-P. Yen, Y.-T. Li, Y.-T. Hu, C.-C. Tseng and
F. F. Wong, Asian J. Org. Chem., 2017, 6, 1470; (k)
M. P. Sibi, L. M. Stanley and T. Soeta, Adv. Synth. Catal.,
Conflicts of interest
The authors declare that they have no known competing
nancial interests or personal relationships that could have
appeared to inuence the work reported in this paper.
Acknowledgements
We are grateful for the nancial support from the National
Natural Science Foundation of China (No. 21801214 and
81702074), Key Scientic Research Project of Colleges and
Universities in Henan Province of China (No. 18A150014,
19A230009 and 20B150019), Key Project of Science and Tech-
nology of Henan Province (No. 202102310298 and
192102110066), the Natural Science Foundation of Henan
Province (No. 202300410016).
18406 | RSC Adv., 2021, 11, 18404–18407
© 2021 The Author(s). Published by the Royal Society of Chemistry