Communication
Journal of Materials Chemistry A
this trend, such as unique product distributions of Sb and Mn-
based alloys, merit further investigation. The validation of the
accelerated screening results with more detailed and traditional
methods demonstrates the utility of the screening platform for
catalyst discovery. These results also represent a cautionary tale
7 A. Vasileff, C. Xu, Y. Jiao, Y. Zheng and S.-Z. Qiao, Chem Rev.,
2018, 1809–1831.
8 J. Christophe and T. Doneux, Electrocatalysis, 2012, 3, 139–
146.
9 A. Jedidi, S. Rasul, D. Masih, L. Cavallo and K. Takanabe, J.
Mater. Chem. A, 2015, 3, 19085–19092.
2
for development of CO RR electrolysis devices as any plating of
metal contaminants in the electrolyte can substantially alter 10 Z. B. Ho, T. S. Gray, K. B. Moraveck, T. B. Gunnoe and
product distributions, creating demanding requirements for G. Zangari, ACS Catal., 2017, 7, 5381–5390.
elimination of trace metal contaminants. A notable precedence 11 G. O. Larrazabal, A. J. Martin, S. Mitchell, R. Hauert and
for this level of sensitivity to trace metals exists in alkaline J. Perez-Ramirez, ACS Catal., 2016, 6265–6274.
oxygen evolution electrocatalysis where trace adventitious Fe 12 S. Rasul, D. H. Anjum, A. Jedidi, Y. Minenkov, L. Cavallo and
from the electrolyte substantially inuenced catalytic activity for K. Takanabe, Angew. Chem., Int. Ed., 2015, 54, 2146–2150.
initially Fe-free catalysts. While the activity boost in that 13 J. He, K. E. Dettelbach, D. A. Salvatore, T. Li and
́
40
situation posed problems for scientic studies but not electrode
C. P. Berlinguette, Angew. Chem., Int. Ed., 2017, 56, 6068–
development, the sensitivity of Cu to metal impurities poses
6072.
more substantial challenges for electrocatalyst research and 14 M. Morimoto, Y. Takatsuji, R. Yamasaki, H. Hashimoto,
development.
I. Nakata, T. Sakakura and T. Haruyama, Electrocatalysis,
018, 9, 323–332.
2
1
5 M. Li, J. Wang, P. Li, K. Chang, C. Li, T. Wang and B. Jiang, J.
Mater. Chem. A, 2016, 4, 4776–4782.
Conclusions
We address challenges in CO2 reduction electrocatalyst 16 D. Ren, B. S.-H. Ang and B. S. Yeo, ACS Catal., 2016, 6, 8239–
discovery through the design of an electrochemical ow cell 8247.
with online mass spectroscopy-based quantication of the 17 Y. Feng, Z. Li, H. Liu, C. Dong, J. Wang, S. A. Kulinich and
faradaic efficiency for H , CH , and C with 12 s measure- X. Du, Langmuir, 2018, 34, 13544–13549.
2
4
2 4
H
ment intervals and partial current detectability of ca. 0.03 mA 18 H. Hu, Y. Tang, Q. Hu, P. Wan, L. Dai and X. J. Yang, Appl.
À2
cm , enabling high throughput screening of Cu bimetallic
Surf. Sci., 2018, 445, 281–286.
alloys with Al, Mn, Co, Ni, Zn, In, Sn, and Sb. The product 19 G. Yin, H. Abe, R. Kodiyath, S. Ueda, N. Srinivasan,
distribution of Cu-rich catalysts is remarkably sensitive to alloy
concentration with 2 at% of some elements causing tenfold
A. Yamaguchi and M. Miyauchi, J. Mater. Chem. A, 2017, 5,
12113–12119.
decrease of hydrocarbon formation, indicating that alloying 20 G. Keerthiga and R. Chetty, J. Electrochem. Soc., 2017, 164,
elements segregate to critical sites for hydrocarbon formation, H164–H169.
which poses substantial challenges for development and 21 E. L. Clark, C. Hahn, T. F. Jaramillo and A. T. Bell, J. Am.
sustainable operation of Cu-based catalysts. Specic alloy
concentrations of Sb and Mn increase C relative to CH
providing a new direction for catalyst development.
Chem. Soc., 2017, 139, 15848–15857.
22 J. P. Grote, A. R. Zeradjanin, S. Cherevko, A. Savan,
B. Breitbach, A. Ludwig and K. J. J. Mayrhofer, J. Catal.,
2
H
4
4
,
2
016, 343, 248–256.
3 H. Baltruschat, J. Am. Soc. Mass Spectrom., 2004, 15, 1693–
706.
24 E. L. Clark, M. R. Singh, Y. Kwon and A. T. Bell, Anal. Chem.,
015, 87, 8013–8020.
2
Conflicts of interest
1
There are no conicts to declare.
2
2
5 S. J. Ashton, Design, construction and research application of
a Differential Electrochemical Mass Spectrometer (DEMS),
Springer Science & Business Media, 2012.
Notes and references
1
2
3
4
P. D. Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo
and E. H. Sargent, Science, 2019, 364, eaav3506.
Y. Hori, H. Wakebe, T. Tsukamoto and O. Koga, Electrochim.
Acta, 1994, 39, 1833–1839.
K. P. Kuhl, E. R. Cave, D. N. Abram and T. F. Jaramillo, Energy
Environ. Sci., 2012, 5, 7050–7059.
26 J. P. Grote, A. R. Zeradjanin, S. Cherevko and
K. J. J. Mayrhofer, Rev. Sci. Instrum., 2014, 85, 104101.
27 P. Khanipour, M. Lçffler, A. M. Reichert, F. T. Haase,
K. J. J. Mayrhofer and I. Katsounaros, Angew. Chem., Int.
Ed., 2019, 131, 7273–7277.
S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, 28 E. L. Clark and A. T. Bell, J. Am. Chem. Soc., 2018, 140, 7012–
S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn,
7020.
J. K. Nørskov, T. F. Jaramillo and I. Chorkendorff, Chem. 29 ASM Alloy Phase Diagram Database™ – ASM International,
Rev., 2019, 119, 7610–7672.
K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram,
56/10192/15469013/DATABASE, (accessed June 25, 2019).
J. Kibsgaard and T. F. Jaramillo, J. Am. Chem. Soc., 2014, 30 E. L. Clark, M. R. Singh, Y. Kwon and A. T. Bell, Anal. Chem.,
36, 14107–14113. 2015, 87, 8013–8020.
A. A. Peterson and J. K. Nørskov, J. Phys. Chem. Lett., 2012, 3, 31 Y. Lai, R. J. R. Jones, Y. Wang, L. Zhou and J. M. Gregoire,
51–258. ACS Comb. Sci., 2019, 21, 692–704.
5
6
1
2
This journal is © The Royal Society of Chemistry 2019
J. Mater. Chem. A, 2019, 7, 26785–26790 | 26789