C.L. Øpstad / Tetrahedron 65 (2009) 7616–7619
7619
a glass NMR tube with 5 mm outer diameter. 13C NMR spectra were
recorded with the inverse gated pulse sequence.
O
S
1c
H3C
CH2
Acknowledgements
O
CH3
S
S
S
S
CH3
S
OH
S
S
S
We are thankful to E. Mørkved (NTNU) for turning our attention
to the explosive nature of alkaline DMSO.
OH
OH
O
O
O
S
O
S
O
H2
CH4
C2H6
OH
OH
S
S
References and notes
O
O
1. Epstein, W. W.; Sweat, F. W. Chem. Rev. 1967, 67, 247–260.
2. Buncel, E.; Symons, E. A. J. Chem. Soc., Chem. Commun. 1970, 164–165.
3. Allan, G. G.; Moks, E.; Nelson, E. N. Chem. Ind. 1967, 1706–1707.
5. Bach, R. D.; Knight, J. W. Tetrahedron Lett. 1979, 3815–3818.
6. Tidwell, T. T. Synthesis 1990, 857–870.
O
H
CH2
CH3
N
2c
7. Yi, C. Y.; Hua, R. M. J. Org. Chem. 2006, 71, 2535–2537.
8. Jain, S. M.; Anand, S. M.; Gupta, D. K.; Sama, J. K.; Lal, S.; Dutt, P. IN192967, 2004.
9. Bernhard, K.; Giger, A. US5,780,693, 1998.
H
N
H
N
N
N
N
N
CH3
N
10. Webb, R.L. US3,264,362, 1966.
11. Kawabata, T.; Moriyama, K.; Kawakami, S.; Tsubaki, K. J. Am. Chem. Soc. 2008,
130, 4153–4157.
O
O
O
O
OH
O
N2 H2 CO
12. Perissutti, E.; Frecentese, F.; Lavecchia, A.; Fiorino, F.; Severino, B.; De Angelis,
F.; Santagada, V.; Caliendo, G. Tetrahedron 2007, 63, 12779–12785.
13. McIntosh, C. E.; Martinez, I.; Ovaska, T. V. Synlett 2004, 2579–2581.
14. Liang, Y. J.; Dong, D. W.; Lu, Y. M.; Wang, Y.; Pan, W.; Chai, Y. Y.; Liu, Q. Synthesis
2006, 3301–3304.
Scheme 3. Reported decay of DMSO radicals (1c) and DMF radicals (2c) obtained after
pulse radiolysis.
15. Yokoyama, Y.; Hikawa, H.; Murakami, Y. J. Chem. Soc., PerkinTrans.12001,1431–1434.
16. Hass, H. B.; Summit, N. J.; Snell, F. D. US2,893,990, 1959.
17. DMSO Product information Bulletin #123B; Gaylord Chemical Company: Slidell,
LA, USA, 2007.
18. French, F. A. Chem. Eng. News 1966, 11, 48.
19. Olson, G. A. Chem. Eng. News 1966, 13, 7.
20. Hyland, K.; Auclair, C. Biochem. Biophys. Res. Commun. 1981, 102, 531–537.
21. Calle, P.; Sanchez, A.; Sieiro, C. J. Chem. Soc., Perkin Trans. 2 1990, 1181–1185.
22. Melnikov, M. Y.; Belevskii, V. N.; Belopushkin, S. I.; Melnikova, O. L. Russ. Chem.
Bull. 1997, 46, 1245–1247.
23. Misik, V.; Kirschenbaum, L. J.; Riesz, P. J. Phys. Chem. 1995, 99, 5970–5976.
24. Stein, G.; Stiassny, G. Nature 1955, 176, 734–735.
25. Symons, M. C. R. J. Chem. Soc., Perkin Trans. 2 1976, 908–915.
26. Fo¨ldes-Papp, Z.; Gerber, G.; Stosser, R.; Schneider, G. J. Prakt. Chem.1991, 333, 293–301.
27. Shishlov, N. M.; Vasilev, Y. V.; Konovalov, V. V.; Korobeynikova, V. N. Radiat.
Phys. Chem. 1997, 49, 451–457.
4. Conclusion
The demonstrated facile generation of long-lived radicals from
DMF and DMSO is in variance with the generally accepted in-
ertness of these solvents towards a small amount of base. The
presence of radicals may perturb reactions performed in these
solvents. Elucidating the progression of the reactions as well as
identification of the radicals and secondary products call for future
investigations. The presented radical formation in DMSO and DMF
at slightly basic conditions invites the solvent producers to update
their fact sheets.
28. Hayon, E.; Hayashi, N.; Ibata, T.; Lichtin, N. N.; Matsumoto, A. J. Phys. Chem. 1971,
75, 2267–2272.
29. Kondo, T.; Kirschenbaum, L. J.; Kim, H.; Riesz, P. J. Phys. Chem. 1993, 97, 522–527.
30. Woodward, J. R.; Lin, T. S.; Sakaguchi, Y.; Hayashi, H. J. Phys. Chem. A 2000,104,557–561.
31. Haseloff, R. F.; Ebert, B.; Damerau, W. Anal. Chim. Acta 1989, 218, 179–184.
32. Rosenthal, I.; Mossoba, M. M.; Riesz, P. Can. J. Chem. 1982, 60, 1486–1492.
33. Qiao, X. L.; Chen, S. M.; Tan, L.; Zheng, H.; Ding, Y. D.; Ping, Z. H. Magn. Reson.
Chem. 2001, 39, 207–211.
34. Choi, M. F.; Hawkins, P. Spectrochim. Acta, Part A 1995, 51, 579–585.
35. Calderazzo, F.; Forte, C.; Marchetti, F.; Pampaloni, G.; Pieretti, L. Helv. Chim. Acta
2004, 87, 781–789.
36. Taguchi, K.; Fujii, S.; Yamano, S.; Cho, A. K.; Kamisuki, S.; Nakai, Y.; Sugawara, F.;
Froines, J. R.; Kumagai, Y. Free Radical Biol. Med. 2007, 43, 789–799.
37. Corey, E. J.; Chaykovs, M. J. Am. Chem. Soc. 1965, 87, 1345–1353.
38. Cooper, T. K.; Walker, D. C. Can. J. Chem. 1971, 49, 2248–2253.
39. Koulkes-Pujo, A.M.; Barat, F.; Mialocq, J.C.; Sutton, J. J. Photochem. 1973/74, 2,
439–450.
40. Pukhalskaya, G. V.; Kotov, A. G.; Pshezhetskii, S. Y. Khimiya Vysokikh Energii
1969, 3, 340–345.
41. Stolze, K.; Mason, R. P. Biochem. Biophys. Res. Commun. 1987, 143, 941–946.
42. Hashimoto, M.; Nakai, Y.; Kohno, M.; Tajima, K.; Kanaori, K.; Endo, N.; Makino,
K. Chem. Lett. 1997, 71–72.
43. Kroh, J.; Burzynska, E. Radiochem. Radioanal. Lett. 1976, 27, 101–108.
44. Kroh, J.; Burzynska, E. Nukleonika 1977, 22, 453–458.
45. Kroh, J.; Burzynska, E. Nukleonika 1977, 22, 443–451.
46. Brunner, E. J. Chem. Eng. Data 1985, 30, 269–273.
5. Experimental Section
Dimethylformamide (>99.8%) and dimethylsulfoxide (100%)
were purchased from VWR International, Fontenay sous Bois,
France, DMF-d7 (NMR grade 99.5% D), DMSO-d6 (NMR grade 99.9%
D) were from Sigma–Aldrich, St. Louis, USA and potassium meth-
oxide (25 wt % in MeOH) from Fluka, Switzerland.
EMR spectra were recorded on a JES-FR30 Free Radical Monitor
from JEOL, Tokyo, Japan. The microwave frequency was 9.1–9.5 GHz
with modulation width 0.05, sweep time 2 min, time constant 0.1 s,
and amplifier gain 500. The samples were prepared by adding the
appropriate solvent or mixture of solvents into the EMR quartz flat
cell (200 mL, 0.4 mm thickness) and then adding the base in a con-
centration of 0.1%. The lag time from mixing the components until
start of the analysis was 1–2 min. The reaction proceeded just as
well with analytical grade DMSO from open bottles or with dry
DMSO from sealed ampoules.
NMR spectra were recorded on a Bruker Avance DPX 300
spectrometer with a QNP probe. The samples were measured in
47. Dymond, J. H. J. Phys. Chem. 1967, 71, 1829–1831.