Angewandte Chemie International Edition
10.1002/anie.202102096
COMMUNICATION
the compound 1 (Br-PDPII) showed the best results (Figures S6
and Table S5), mainly due to higher VOC and FF values.
Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 2015, 347, 967–
9
70.
a) A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc.
009, 131, 6050–6051; b) https://www.nrel.gov/pv/cell-efficiency.html,
accessed: September 2020).
[
2]
2
Finally, the stability of the device with doping was investigated.
As shown in Figure S7, the un-encapsulation device with doping
(
[3]
B. Ehrler, E Alarcón-Lladó, S. W. Tabernig, T. Veeken, E. C. Garnett, A.
Polman, ACS Energy Lett. 2020, 5, 3029–3033.
1
exposed to air with a relative humidity (RH) of around 20%
[
4]
a) S. Xiong, J. Song, J. Yang, J. Xu, M. Zhang, R. Ma, D. Li, X. Liu, F.
Liu, C. Duan, M. Fahlman, Q. Bao, Sol. RRL 2020, 4, 1900529; b) X. Zhu,
M. Du, J. Feng, H. Wang, Z. Xu, L. Wang, S. Zuo, C. Wang, Z. Wang, C.
Zhang, X. Ren, S. Priya, D. Yang, S. (Frank) Liu, Angew. Chem. Int. Ed.
retained ~ 94% of the initial PCE after 1300h of storage, whereas
an un-encapsulation device without doping kept ~ 87% of the
original value under the same conditions. The light stability of
encapsulated devices with and without doping was test as shown
in Figure S8. The doped device remained basically unchanged
after 270 h continuous irradiation at MPP condition. However, the
control device decayed to 60% of its original PCE after 240 h. We
2020, DOI: 10.1002/anie.202010987; c) S. Chen, Q. Pan, J. Li, C. Zhao,
X. Guo, Y. Zhao, T. Jiu, Sci. China Mater. 2020, 63, 2465–2476; d) L. K.
Ono, S. (Frank) Liu, Y. Qi, Angew. Chem. Int. Ed. 2020, 59, 6676–6698;
e) W. Qi, X. Zhou, J. Li, J. Cheng, Y. Li, M. J. Ko, Y. Zhao, X. Zhang, Sci.
Bull. 2020, 65, 2022–2032; f) M. Abdi-Jalebi, M. I. Dar, S. P. Senanayak,
A. Sadhanala, Z. Andaji-Garmaroudi, L. M. Pazos-Outón, J. M. Richter,
A. J. Pearson, H. Sirringhaus, M. Grätzel, R. H. Friend, Sci. Adv. 2019,
5, eaav2012; g) E. H. Anaraki, A. Kermanpur, M. T. Mayer, L. Steier, T.
also conducted high humidity (RH 80%) and high temperature
Ahmed, S.-H. Turren-Cruz, J. Seo, J. Luo, S. M. Zakeeruddin, W. R.
Tress, T. Edvinsson, M. Grätzel, A. Hagfeldt, J.-P. Correa-Baena, ACS
Energy Lett. 2018, 3, 773−778.
o
(
150 C) measurement of perovskite films without and with doping.
We took pictures of the films both from front and back sides. As
shown in Figure S9, the control film began to decay at 0.5h under
RH 80%. However, the doped film shows sign of degradation at
around 2h. Figure S10 shows the thermal stability of perovskite
[
5]
a) W. Chen, Y. Wang, G. Pang, C. W. Koh, A. B. Djurišic´, Y. Wu, B. Tu,
F.-z. Liu, R. Chen, H. Y. Woo, X. Guo, Z. He, Adv. Funct. Mater. 2019,
29, 1808855; b) H. Chen, T. Liu, P. Zhou, S. Li, J. Ren, H. He, J. Wang,
N. Wang, S. Guo, Adv. Mater. 2019, 32, 1905661; c) W. Xu, Y. Gao, W.
Ming, F. He, J. Li, X.-H. Zhu, F. Kang, J. Li, G. Wei, Adv. Mater. 2020,
32, 2003965; d) S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao, W. Sun, Y. Li,
F. Gu, J. Wang, Z. Liu, Z. Bian, C. Huang, J. Am. Chem. Soc. 2017, 139,
o
films under 150 C and RH 25% in air. We can see that the doped
film remains unchanged after 8h compared to the control film
decomposition at 6h. All above data shows that the introduction
of PDPII could enhance the stability of perovskite films and PSCs.
7
504–7512; e) W.-Q. Wu, Q. Wang, Y. Fang, Y. Shao, S. Tang, Y. Deng,
H. Lu, Y. Liu, T. Li, Z. Yang, A. Gruverman, J. Huang, Nat. Commun.
018, 9, 1625; f) Y. Lin, Y. Shao, J. Dai, T. Li, Y. Liu, X. Dai, X. Xiao, Y.
2
Deng, A. Gruverman, X. C. Zeng, J. Huang, Nat. Commun. 2021, 12,
DOI: 10.1038/s41467-020-20110-6.
In summary, a chemical doping approach was utilized to
improve the performance of PSCs, using an organic small
molecule PDPII based on the imidazo[5,1,2-cd]indolizine core, on
one side passivates defects, on the other side downshifts valence
band maximum to improve hole extraction. As a result, the device
with negligible hysteresis (HI of 0.3%) were achieved compared
to the control device (HI of 9.9%). Taking advantage of multiple
techniques to characterize the reduction of defects density and
efficient depression of charge recombination are detailed
illustrated in this paper, where also shows that organic chemistry
could provide efficient tools to improve the performance of PSCs.
[
6]
a) C.-H. Chiang, C.-G. Wu, Nat. Photon. 2016, 10, 196–200; b) K. Wang,
C. Liu, P. Du, J. Zheng, X. Gong, Energy Environ. Sci. 2015, 8, 1245–
1255; c) Y. Wu, X. Yang, W. Chen, Y. Yue, M. Cai, F. Xie, E. Bi, A. Islam,
L. Han, Nat. Energy 2016,1,16148.
[
[
7]
8]
X. Li, C.-C. Chen, M. Cai, X. Hua, F. Xie, X. Liu, J. Hua, Y.-T. Long, H.
Tian, L. Han, Adv. Energy Mater. 2018, 8, 1800715.
a) D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X.
Li, A. Hagfeldt, M. Grätzel, Nat Energy 2016, 1, 16142; b) Q. Hu, E.
Rezaee, W. Xu, R. Ramachandran, Q. Chen, H. Xu, T. EL-Assaad, D. V.
McGrath, Z.-X. Xu, Small 2020, 17, 2005216.
[
[
9]
Y. Wang, X. Liu, Z. Zhou, P. Ru, H. Chen, X. Yang, L. Han, Adv. Mater.
2019, 31, 1803231.
10] T. Niu, J. Lu, R. Munir, J. Li, D. Barrit, X. Zhang, H. Hu, Z. Yang, A.
Amassian, K. Zhao, S. Liu, Adv. Mater. 2018, 30, 1706576.
[11] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Nat. Commun. 2014, 5, 5784.
[
[
12] J. Chen, X. Zhao, S. G. Kim, N. G. Park, Adv. Mater. 2019, 31, 1902902.
13] a) Z. Zhou, Z. Qiang, T. Sakamaki, I. Takei, R. Shang, E, Nakamura,
ACS Appl. Mater. Interfaces 2019, 11, 25, 22603–22611; b) L. Wang, H.
Zhou, J. Hu, B. Huang, M. Sun, B. Dong, G. Zheng, Y. Huang, Y. Chen,
L. Li, Z. Xu, N. Li, Z. Liu, Q. Chen, L.-D. Sun, C.-H. Yan, Science 2019,
Acknowledgements
3
63, 265−270.
The work was supported by the Taishan Scholars Project of
Shandong Province. We are grateful to Dr. Chongwen Li and Dr.
Xiao Liu for their beneficial discussion.
[
[
14] a) Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li,
Z. Yin, J. You, Nat. Photon. 2019, 13, 500; b) X. Liu, H. Q. Wang, Y. Li,
Z. Gui, S. Ming, K. Usman, W. Zhang, J. Fang, Adv. Sci. 2017, 4,
1700053.
15] F. B. van Duijneveldt, J. G. C. M. v. D.-v. Rijdt, J. H. v. Lenthe, Chem.
Keywords: Perovskite solar cells • π-Pb2+ interaction • defects
density • charge extraction • organic small molecule
17] a) H. Kanda, N. Shibayama, A. J. Huckaba, Y. Lee, S. Paek, N. Klipfel,
[
[
C. Rolda´n-Carmona, V. I. E. Queloz, G. Grancini, Y. Zhang, M. Abuhelaiqa,
K. T. Cho, M. Li, M. D. Mensi, S. Kingee, M. K. Nazeeruddin, Energy Environ.
Sci. 2020, 13, 1222–1230. b) F. Ansari, E. Shirzadi, M. Salavati-Niasari, T.
LaGrange, K. Nonomura, J.-H. Yum, K. Sivula, S. M. Zakeeruddin, M. K.
Nazeeruddin, M. Grätzel, P. J. Dyson, A. Hagfeld, J. Am. Chem. Soc. 2020,
[
1]
a) K. Galkowski, A. Mitioglu, A. Miyata, P. Plochocka, O. Portugall, G. E.
Eperon, J. T.-W. Wang, T. Stergiopoulos, S. D. Stranks, H. J. Snaith, R.
J. Nicholas, Energy Environ. Sci. 2016, 9, 962–970; b) T. Baikie, Y. Fang,
J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Grätzel, T. J.
White, J. Mater. Chem. A 2013, 1, 5628–5641; c) Q. Dong, Y. Fang, Y.
142, 26, 11428–11433.
5
This article is protected by copyright. All rights reserved.