ChemComm
Communication
approach (see ESI† for details) that singles out the torsional References
motion around the CQC bond that is isomerized, and allows
1
2
K. Ariga, Chem. Sci., 2020, 11, 10594–10604.
V. Balzani, A. Credi, F. M. Raymo and J. F. Stoddart, Angew. Chem.,
Int. Ed., 2000, 39, 3348–3391.
the one-dimensional description of the decay from the excited
state and the fate of the molecule in the ground state following
3
4
3 M. H.-Y. Chan, S. Y.-L. Leung and V. W.-W. Yam, J. Am. Chem. Soc.,
019, 141, 12312–12321.
4
irradiation, providing an approximation of the photoisome-
rization process for a reasonable computational cost. Topolo-
gical analysis of electron density shows that the three-center
2
V. Garcia-Lopez, F. Chen, L. G. Nilewski, G. Duret, A. Aliyan,
A. B. Kolomeisky, J. T. Robinson, G. Wang, R. Pal and J. M. Tour,
Nature, 2017, 548, 567–572.
J. Lee, H. Lee and C. Kim, New J. Chem., 2020, 44, 14177–14780.
L. Yin, H. Tang, K. H. Kim, N. Zheng, Z. Song, N. P. Gabrielson,
H. Lu and J. Cheng, Angew. Chem., Int. Ed., 2013, 52, 9182–9186.
+
+
[
N–Ag–N] and [N–I–N] bonds are covalent in nature, whereas
5
6
the hydrogen bonded complex possess one covalent and one
8
,10
noncovalent interaction (see ESI†).
This observation is in
1
2,29
7 C. F. Lin and M. J. Wu, Aryl-substituted acyclic enediyne compounds,
Google patents, US 7332623 B2, 2008.
8
agreement with the previous literature.
showed the lowest barrier to rotation, 269 kJ mol , whereas
the 1-Ag complex the highest barrier, 530 kJ mol , 26% higher
than the barrier of the 1-I complex, 422 kJ mol . In good
The free ligand 1
À1
A. C. Reiersolmoen, S. Battaglia, S. Oien-Odegaard, A. K. Gupta,
A. Fiksdahl, R. Lindh and M. Erdelyi, Chem. Sci., 2020, 11,
7979–7990.
J. Barluenga, J. M. Gonzalez, P. J. Campos and G. Asensio, Angew.
Chem., Int. Ed. Engl., 1985, 97, 341–342.
À1
À1
9
agreement with the experiments, the barrier of the hydrogen
À1
bonding 1-H complex was found to be lower, 347 kJ mol . This 10 A.-C. C. Carlsson, J. Gr ¨a fenstein, A. Budnjo, J. L. Laurila,
J. Bergquist, A. Karim, R. Kleinmaier, U. Brath and M. Erdelyi,
trend indicates that the rotational barrier for isomerization
J. Am. Chem. Soc., 2012, 134, 5706–5715.
tracks with the relative strengths of the three-center, four-
electron bonds, namely 1-H o 1-I o 1-Ag. Here it should be
noted that 1-H does not form a true three-center bond; this has
been discussed in detail in ref. 8. Whereas the computed
1
1 A.-C. C. Carlsson, J. Gr ¨a fenstein, J. L. Laurila, J. Bergquist and
M. Erdelyi, Chem. Commun., 2012, 48, 1458–1460.
12 L. Turunen and M. Erdelyi, Chem. Soc. Rev., 2020, 49, 2688–2700.
13 S. B. Hakkert and M. Erdelyi, J. Phys. Org. Chem., 2015, 28, 226–233.
14 E. Bosch and C. L. Barnes, Inorg. Chem., 2001, 40, 3097–3100.
barrier heights are high, due to the use of the simple one 15 O. B. Berryman, A. C. Sather and J. Rebek, Pacifichem 2010,
International Chemical Congress of Pacific Basin Societies, Hono-
nuclear coordinate with respect to torsional angle approach,
lulu, HI, United States, 2010, ORGN-76.
the trends in energies fit well to the experimental observations.
In conclusion, the photoisomerization of an enediyne photo-
switch is modulated by secondary interactions at the periphery
of the molecule. Hence, the photoisomerization rate is retarded
1
6 O. B. Berryman, A. C. Sather and J. Rebek, Jr., Abstracts of Papers,
243rd ACS National Meeting & Exposition, San Diego, CA, United
States, 2012, ORGN-439.
7 A. Kwiatkowski, B. Jedrzejewska, M. Jozefowicz, I. Grela and
B. Osmialowski, RSC Adv., 2018, 8, 23698–23710.
1
using a hydrogen bond, and is eliminated using silver(I) 18 Z. Ye, Z. Yang, L. Wang, L. Chen, Y. Cai, P. Deng, W. Feng, X. Li and
L. Yuan, Angew. Chem., Int. Ed., 2019, 58, 12519–12523.
coordination. The halogen bonded complex photoisomerizes,
1
9 M. Saccone, F. F. Palacio, G. Cavallo, V. Dichiarante, M. Virkki,
G. Terraneo, A. Priimagi and P. Metrangolo, Faraday Discuss., 2017,
203, 407–422.
0 M. Saccone, A. Siiskonen, F. Fernandez-Palacio, A. Priimagi,
G. Terraneo, G. Resnati and P. Metrangolo, Acta Crystallogr., Sect.
B: Struct. Sci., Cryst. Eng. Mater., 2017, 73, 227–233.
but is simultaneously converted to the hydrogen bonded
complex. Additionally, the photostationary state of the system
can be adjusted away from the trans isomer with hydrogen
bonding, or removed with silver(I) coordination. Computa-
2
tions highlight that the propensity for the ligand to isomerize 21 M. Saccone, G. Cavallo, P. Metrangolo, G. Resnati and A. Priimagi,
Top. Curr. Chem., 2015, 359, 147–166.
is directly related to the bond strength in the secondary
2
2 M. Saccone, G. Terraneo, T. Pilati, G. Cavallo, A. Priimagi,
P. Metrangolo and G. Resnati, Acta Crystallogr., Sect. B: Struct. Sci.,
Cryst. Eng. Mater., 2014, 70, 149–156.
3 G. Markiewicz, A. Walczak, F. Perlitius, M. Piasecka, J. M. Harrowfield
and A. R. Stefankiewicz, Dalton Trans., 2018, 47, 14254–14262.
4 B. Tylkowski, R. Jastrzab and M. Skrobanska, New-Generation Bioi-
norganic Complexes, 2016, pp. 41–68.
5 J. Emsley, Chem. Soc. Rev., 1980, 9, 91–124.
6 L. Turunen, A. Peuronen, S. Forsblom, E. Kalenius, M. Lahtinen and
K. Rissanen, Chem. – Eur. J., 2017, 23, 11714–11718.
interaction. Thus, we demonstrate that three-center, four-
electron bonding offers an attractive strategy to further control
molecular machines that utilize photoisomerization to access
different conformations. In time, this approach could be used to
advance molecular machines and information storage.
2
2
2
2
This project made use of the NMR Uppsala infrastructure, which
is funded by the Department of Chemistry–BMC and the Disciplin-
ary Domain of Medicine and Pharmacy. We thank Ignacio Fern ´a n- 27 L. Turunen, U. Warzok, R. Puttreddy, N. K. Beyeh, C. A. Schalley and
K. Rissanen, Angew. Chem., Int. Ed., 2016, 55, 14033–14036.
8 B. Koenig, E. Schofield, P. Bubenitschek and P. G. Jones, J. Org.
Chem., 1994, 59, 7142–7143.
dez Galv ´a n for fruitful discussions, and the Swedish Research
Council (2020-03431), FORMAS (2017-01173), the Wenner-Gren
2
Foundation (F2020-0003), and the National Science Foundation 29 A. Karim, M. Reitti, A.-C. C. Carlsson, J. Gr ¨a fenstein and M. Erdelyi,
Chem. Sci., 2014, 5, 3226–3233.
(
CHE-1555324) for financial support. Computations were performed
3
0 S. Lindblad, K. Mehmeti, A. X. Veiga, B. Nekoueishahraki,
J. Gr ¨a fenstein and M. Erdelyi, J. Am. Chem. Soc., 2018, 140,
13503–13513.
on resources provided by Swedish National Infrastructure for
Computing (SNIC) through the National Supercomputer Center
(
NSC) at Link o¨ ping University under Project SNIC2020/5-435.
3
3
1 S. Ghosh, S. Bhattacharyya and S. Wategaonkar, J. Phys. Chem. A,
2
015, 119, 10863–10870.
2 Z. L. Seeger and E. I. Izgorodina, J. Chem. Theory Comput., 2020, 16,
735–6753.
6
Conflicts of interest
3
3
3 H. Kruse, R. Szabla and J. Sponer, J. Chem. Phys., 2020, 152, 214104.
4 N. J. Turro, Modern Molecular Photochemistry, Benjamin/Cummings,
Menlo Park, CA, 1978.
There are no conflicts to declare.
This journal is © The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 6261–6263 | 6263