Notes and references
‡ Satisfactory characterising data have been obtained for all the new
compounds (see ESI).
§ Crystal data for 1b: C26H41N3Ti, M = 443.53, tetragonal, I41cd,
a = b = 20.5223(4), c = 24.3873(6) Å, U = 10271.1 Å3, Z = 16, T = 150
K, µ = 0.35 mmϪ1, 5910 independent reflections (Rmerge = 0.060), 4139
I > 3σ(I) used in refinement, final R indices: R = 0.0396, Rw = 0.0418.
For 3: C36H64N4O2Ti2, M = 680.71, monoclinic, P21/n, a = 9.7810(4),
b = 15.4630(4), c = 12.0930(5) Å, β = 92.625(2)Њ, U = 1827.1 Å3, Z = 2,
T = 150 K, µ = 0.47 mmϪ1, 3890 independent reflections (Rmerge = 0.07),
2403 I > 3σ(I) used in refinement, final
R indices: R = 0.0523,
Rw = 0.0395. For 4: C28H41N3O4Tiؒ0.5(C6H6), M = 570.61, orthorhom-
bic, Pbca, a = 14.4250(2), b = 17.2619(3), c = 24.3318(4) Å, U = 6058.7
Å3, Z = 8, T = 150 K, µ = 0.32 mmϪ1, 6916 independent reflections
(Rmerge = 0.055), 4551 I > 3σ(I) used in refinement, final R indices:
R = 0.0463, Rw = 0.0534. CCDC reference numbers 160966–160968. See
in CIF or other electronic format.
1 For reviews see: D. E. Wigley, Prog. Inorg. Chem., 1994, 42, 239;
P. Mountford, Chem. Commun., 1997, 2127 (Feature Article).
2 For recent work and leading references: (a) L. H. Gade and P. Mount-
ford, Coord. Chem. Rev., 2001, in press; (b) A. J. Blake, J. M.
McInnes, P. Mountford, G. I. Nikonov, D. Swallow and D. J. Watkin,
J. Chem. Soc., Dalton Trans., 1999, 379; (c) Z. K. Sweeney, J. L.
Salsman, R. A. Andersen and R. G. Bergman, Angew. Chem., Int.
Ed., 2000, 2339; (d) J. L. Bennett and P. T. Wolczanski, J. Am. Chem.
Soc., 1997, 119, 10696; (e) C. J. Harlan, J. A. Tunge, B. M. Bridge-
water and J. R. Norton, Organometallics, 2000, 19, 2365; ( f ) J. L.
Thorman, I. A. Guzei, V. G. Young and L. K. Woo, Inorg. Chem.,
2000, 39, 2344.
3 P. J. Stewart, A. J. Blake and P. Mountford, Organometallics, 1998, 17,
3271; J. R. Hagadorn and J. Arnold, Organometallics, 1998, 17, 1355
and references therein.
4 K. C. Jayaratne and L. R. Sita, J. Am. Chem. Soc., 2000, 122, 958 and
references therein.
5 S. C. Dunn, P. Mountford and D. A. Robson, J. Chem. Soc., Dalton
Trans., 1997, 293.
6 D. S. Glueck, J. Wu, F. J. Hollander and R. G. Bergman, J. Am. Chem.
Soc., 1991, 113, 2041.
7 The X-ray structure of the homologous N,O-bound carbamate com-
plex [Ti(η-C5Me5){κ2-Me3SiNC(Ph)NCH2CH2NMe2}{O(CO)NtBu}]
has been determined: C. L. Boyd, A. E. Guiducci and P. Mountford,
unpublished results.
Fig. 3 Displacement ellipsoid (30%) plot of [Ti(η-C5Me5){MeC-
(NiPr)2}{O(CO)N(2,6-C6H3Me2)(CO)O}] 4. Hydrogen atoms are omit-
ted for clarity. Selected bond lengths: Ti(1)–Cp*cent 2.046. Ti(1)–N(2)
2.064(3), Ti(1)–N(3) 2.071(3), Ti(1)–O(1) 1.932(2), Ti(1)–O(3), N(1)–
C(1) 1.410(3), N(1)–C(2) 1.417(3), C(1)–O(2) 1.213(3), C(2)–O(4)
1.210(3) Å where Cp*cent is the C5Me5 ring carbon centroid.
Ti and N, respectively. Therefore an aryl-substituted carbamate
nitrogen would be better stabilised during this process. In this
regard we have recently found in preliminary studies that
fluoraryl analogues of 2b undergo the second CO2 insertion
reaction at faster relative rates compared to those of the
non-fluorinated homologues, consistent with the view that
electron-withdrawing groups can accelerate the novel double
insertion reaction. Further studies of the role of the imide
N-substituent on the pathway of these and related reactions are
underway, along with a survey of the chemistry of 1a,b and
their homologues in general. Moreover, it is clear that a better
understanding of the role and influence of the imido N-
substituent on the reactions of imido complexes will progress
the rational design of useful imido group transfer reagents.
We thank the EPSRC for support of this work.
1394
J. Chem. Soc., Dalton Trans., 2001, 1392–1394