Communication
Green Chemistry
6 (a) G. Sahara and O. Ishitani, Inorg. Chem., 2015, 54, 5096;
(b) A. Nakada, K. Koike, T. Nakashima, T. Morimoto and
O. Ishitani, Inorg. Chem., 2015, 54, 1800; (c) A. Nakada,
K. Koike, K. Maeda and O. Ishitani, Green Chem., 2016, 18,
139; (d) E. Kato, H. Takeda, K. Koike, K. Ohkubo and
O. Ishitani, Chem. Sci., 2015, 6, 3003; (e) C. Liu,
K. D. Dubois, M. E. Louis, A. S. Vorushilov and G. Li, ACS
Catal., 2013, 3, 655; (f) J. Schneider, K. Q. Vuong,
J. A. Calladine, X.-Z. Sun, A. C. Whitwood, M. W. George
and R. N. Perutz, Inorg. Chem., 2011, 50, 11877;
(g) J. Ettedgui, Y. Diskin-Posner, L. Weiner and
R. Neumann, J. Am. Chem. Soc., 2011, 133, 188;
(h) H. Takeda, K. Koike, H. Inoue and O. Ishitani, J. Am.
Chem. Soc., 2008, 130, 2023.
7 (a) R. O. Reithmeier, S. Meister, A. Siebel and B. Rieger,
Dalton Trans., 2015, 44, 6466; (b) R. O. Reithmeier,
S. Meister, B. Rieger, A. Siebel, M. Tschurl, U. Heiz and
E. Herdtweck, Dalton Trans., 2014, 43, 13259; (c) S. Sato,
T. Morikawa, T. Kajino and O. Ishitani, Angew. Chem., Int.
Ed., 2013, 52, 988.
Conclusions
In summary, we have described a novel selective photocatalytic
system for CO2 reduction based on earth-abundant elements,
combining a copper-based photosensitizer and a molecularly-
defined iron catalyst. The Cu PS was easily generated in situ
using a copper salt, bidentate phosphines, and easily available
diimine ligands. When such a luminescent Cu complex was
combined with an iron cyclopentadienone catalyst in the pres-
ence of light and a suitable electron donor, carbon dioxide is
selectively reduced to CO with a TON up to 487 and a ΦCO
=
13.3%. According to mechanistic investigations, the photo-
catalytic reduction of CO2 proceeded via reductive quenching
of the excited Cu PS with BIH and further electron transfer
from the resulting reduced species of Cu PS to the iron
catalyst.
Acknowledgements
This work has been supported by the state of Mecklenburg-
Vorpommern, the BMBF, and the EU fund H2020-
MSCA-ITN-2015 in Horizon 2020 as part of the project
NoNoMeCat (675020). A. R.-H. acknowledges financial support
from the DAAD.
8 (a) Z. Guo, S. Cheng, C. Cometto, E. Anxolabéhère-Mallart,
S.-M. Ng, C.-C. Ko, G. Liu, L. Chen, M. Robert and
T.-C. Lau, J. Am. Chem. Soc., 2016, 138, 9413–9416;
(b) P. L. Cheung, C. W. Machan, A. Y. S. Malkhasian,
J. Agarwal and C. P. Kubiak, Inorg. Chem., 2016, 55, 3192–
3198; (c) P. G. Alsabeh, A. Rosas-Hernández, E. Barsch,
H. Junge, R. Ludwig and M. Beller, Catal. Sci. Technol.,
2016, 6, 3623–3630; (d) F. Wang, B. Cao, W.-P. To,
C.-W. Tse, K. Li, X.-Y. Chang, C. Zang, S. L.-F. Chan and
C.-M. Che, Catal. Sci. Technol., 2016, 6, 7408–7420;
(e) L. Chen, Z. Guo, X.-G. Wei, C. Gallenkamp, J. Bonin,
E. Anxolabéhère-Mallart, K.-C. Lau, T.-C. Lau and
M. Robert, J. Am. Chem. Soc., 2015, 137, 10918–10921; (f) S.
L.-F. Chan, T. L. Lam, C. Yang, S.-C. Yan and N. M. Cheng,
Chem. Commun., 2015, 51, 7799–7801; (g) J. Bonin,
M. Robert and M. Routier, J. Am. Chem. Soc., 2014, 136,
16768–16771; (h) H. Takeda, H. Koizumi, K. Okamoto and
O. Ishitani, Chem. Commun., 2014, 50, 1491–1493;
(i) V. S. Thoi, N. Kornienko, C. G. Margarit, P. Yang and
C. J. Chang, J. Am. Chem. Soc., 2013, 135, 14413–14424.
9 H. Takeda, K. Ohashi, A. Sekine and O. Ishitani, J. Am.
Chem. Soc., 2016, 138, 4354–4357.
Notes and references
1 M. Aresta, in Carbon Dioxide as Chemical Feedstock, ed.
M. Aresta, Wiley-VCH, Weinheim, 2010, pp. 1–14.
2 (a) Y. Yamazaki, H. Takeda and O. Ishitani, J. Photochem.
Photobiol., C, 2015, 25, 106–137; (b) T. Yui, Y. Tamaki,
K. Sekizawa and O. Ishitani, Top. Curr. Chem., 2011, 303,
151–184; (c) A. J. Morris, G. J. Meyer and E. Fujita, Acc.
Chem. Res., 2009, 42, 1983–1994.
3 (a) J. Hawecker, J.-M. Lehn and R. Ziessel, Helv. Chim. Acta,
1986, 69, 1990; (b) J. Hawecker, J.-M. Lehn and R. Ziessel,
J. Chem. Soc., Chem. Commun., 1983, 536.
4 (a) A. Juris, V. Balzani, F. Barigelletti, S. Campagna,
P. Belser and A. von Zelewsky, Coord. Chem. Rev., 1988, 84,
85–277; (b) A. Ito and T. J. Meyer, Phys. Chem. Chem. Phys.,
2012, 14, 13731–13745; (c) K. A. King, P. J. Spellane and 10 (a) S.-P. Luo, E. Mejía, A. Friedrich, A. Pazidis, H. Junge,
R. J. Watts, J. Am. Chem. Soc., 1985, 107, 1431–1432;
(d) A. Kapturkiewicz and G. Angulo, Dalton Trans., 2003,
3907–3913; (e) P. J. Hay, J. Phys. Chem. A, 2002, 106, 1634–
1641.
5 (a) Y. Kuramochi, J. Itabashi, K. Fukaya, A. Enomoto,
M. Yoshida and H. Ishida, Chem. Sci., 2015, 6, 3063–3074;
(b) Y. Kuramochi, M. Kamiya and H. Ishida, Inorg. Chem.,
2014, 53, 3326–3332; (c) H. Ishida, T. Terada, K. Tanaka
and T. Tanaka, Inorg. Chem., 1990, 29, 905–911;
(d) J.-M. Lehn and R. Ziessel, J. Organomet. Chem., 1990,
382, 157–173; (e) H. Ishida, K. Tanaka and T. Tanaka,
Chem. Lett., 1988, 17, 339–342; (f) I. Hitoshi, T. Koji and
T. Toshio, Chem. Lett., 1987, 16, 1035–1038.
A.-E. Surkus, R. Jackstell, S. Denurra, S. Gladiali,
S. Lochbrunner and M. Beller, Angew. Chem., Int. Ed., 2013,
52, 419–423; (b) E. Mejía, S.-P. Luo, M. Karnahl,
A. Friedrich, S. Tschierlei, A.-E. Surkus, H. Junge,
S. Gladiali, S. Lochbrunner and M. Beller, Chem. – Eur. J.,
2013, 19, 15972–15978; (c) M. Karnahl, E. Mejía,
N. Rockstroh, S. Tschierlei, S.-P. Luo, K. Grabow, A. Kruth,
V. Brüser, H. Junge, S. Lochbrunner and M. Beller,
ChemCatChem, 2014, 6, 82–86; (d) S. Fischer, D. Hollmann,
S. Tschierlei, M. Karnahl, N. Rockstroh, E. Barsch,
P. Schwarzbach, S.-P. Luo, H. Junge, M. Beller,
S. Lochbrunner, R. Ludwig and A. Brückner, ACS Catal.,
2014, 4, 1845–1849.
Green Chem.
This journal is © The Royal Society of Chemistry 2017