Journal of Medicinal Chemistry
Article
antagonist (UK-240,455) in rats, dogs and man. Xenobiotica 2003, 33,
541−560.
(c) Lodola, A.; De Vivo, M. The increasing role of QM/MM in
drug discovery. Adv. Protein Chem. Struct. Biol. 2012, 87, 337−362.
́
́
(21) Madarasz, A.; Berta, D.; Paton, R. S. Development of a true
(6) Elleraas, J.; Ewanicki, J.; Johnson, T. W.; Sach, N. W.; Collins, M.
R.; Richardson, P. F. Conformational studies and atropisomerism
kinetics of the ALK clinical candidate lorlatinib (PF-06463922) and
desmethyl congeners. Angew. Chem., Int. Ed. 2016, 55, 3590−3595.
(7) Glunz, W. P.; Mueller, L.; Cheney, L. D.; Ladziata, V.; Zou, Y.;
Wurtz, N. R.; Wei, A.; Wong, P.; Wexler, R. R.; Priestley, E. S.
Atropisomer control in macrocyclic factor VIIa inhibitors. J. Med.
Chem. 2016, 59, 4007−4018.
transition state force field from quantum mechanical calculations. J.
Chem. Theory Comput. 2016, 12, 1833−1844.
(22) Carloni, P.; Alber, F. Quantum medicinal chemistry. In Methods
and Principles in Medicinal Chemistry; Mannhold, R., Kubinyi, H.,
Folkers, G., Eds.; Wiley-VCH: Weinheim, Germany, 2003.
(23) (a) Becke, A. D. Density-functional thermochemistry. III. The
role of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652. (b) Becke,
A. D. A new mixing of Hartree-Fock and local density-functional
theories. J. Chem. Phys. 1993, 98, 1372−1377. (c) Lee, C. T.; Yang, W.
T.; Parr, R. G. Development of the Colle-Salvetti correlation-energy
formula into a functional of the electron-density. Phys. Rev. B: Condens.
Matter Mater. Phys. 1988, 37, 785−789.
(8) LaPlante, S. R.; Fader, L. D.; Fandrick, K. R.; Fandrick, D. R.;
Hucke, O.; Kemper, R.; Miller, S. P. F.; Edwards, P. J. Assessing
atropisomer axial chirality in drug discovery and development. J. Med.
Chem. 2011, 54, 7005−7022.
(9) LaPlante, S. R.; Edwards, P. J.; Fader, L. D.; Jakalian, A.; Hucke,
O. Revealing atropisomer axial chirality in drug discovery.
ChemMedChem 2011, 6, 505−513.
(10) Xing, L.; Devadas, B.; Devraj, R. V.; Selness, S. R.; Shieh, H.;
Walker, J. K.; Mao, M.; Messing, D.; Samas, B.; Yang, J. Z.; Anderson,
G. D.; Webb, E. G.; Monahan, J. B. Discovery and characterization of
atropisomer PH-797804, a p38 MAP kinase inhibitor, as a clinical drug
candidate. ChemMedChem 2012, 7, 273−280.
(11) Sadhu, C.; Masinovsky, B.; Dick, K.; Sowell, C. G.; Staunton, D.
E. Essential role of phosphoinositide 3- kinase delta in neutrophil
directional movement. J. Immunol. 2003, 170, 2647−2654.
(12) Everts, J. B.; Ulrich, R. G. Atropoisomers of 2-Purinyl-3-tolyl-
quinazolinone derivatives and methods of use. WO 2010/111432,
2010.
(13) Marahatta, A.; Bhandary, B.; Lee, Y. C.; Kim, S. R.; Chae, H- J.
Development and validation of a highly sensitive LC-MS/MS method
for quantification of IC87114 in mice plasma, bronchoalveolar lavage
and lung samples: Application to pharmacokinetic study. J. Pharm.
Biomed. Anal. 2014, 89, 197−202.
(14) Thappali, S. R.; Varanasi, K. V.; Veeraraghavan, S.; Vakkalanka,
S. K.; Mukkanti, K. Simultaneous quantitation of IC87114, Roflumilast
and its active metabolite Roflumilast N-oxide in plasma by LC-MS/
MS: application for a pharmacokinetic study. J. Mass Spectrom. 2012,
47, 1612−1619.
(15) Spadoni, G.; Bedini, A.; Lucarini, S.; Mari, M.; Caignard, D. H.;
Boutin, J. A.; Delagrange, P.; Lucini, V.; Scaglione, F.; Lodola, A.;
Zanardi, F.; Pala, D.; Mor, M.; Rivara, S. Highly potent and selective
MT2 melatonin receptor full agonists from conformational analysis of
1-benzyl-2-acylaminomethyl-tetrahydroquinolines. J. Med. Chem. 2015,
58, 7512−7525.
(16) Bedini, A.; Lucarini, S.; Spadoni, G.; Tarzia, G.; Scaglione, F.;
Dugnani, S.; Pannacci, M.; Lucini, V.; Carmi, C.; Pala, D.; Rivara, S.;
Mor, M. Toward the definition of stereochemical requirements for
MT2-selective antagonists and partial agonists by studying 4-phenyl-2-
propionamidotetralin derivatives. J. Med. Chem. 2011, 54, 8362−8372.
(17) Berndt, A.; Miller, S.; Williams, O.; Le, D. D.; Houseman, B. T.;
Pacold, J. I.; Gorrec, F.; Hon, W.-C.; Liu, Y.; Rommel, C.; Gaillard, P.;
(24) Elstner, M. The SCC-DFTB method and its application to
biological systems. Theor. Chem. Acc. 2006, 116, 316−325.
(25) Walker, R. C.; Crowley, M. F.; Case, D. A. The implementation
of a fast and accurate QM/MM potential method in AMBER. J.
Comput. Chem. 2008, 29, 1019−1031.
(26) Rajamani, R.; Naidoo, K. J.; Gao, J. Implementation of an
adaptive umbrella sampling method for the calculation of multidimen-
sional potential of mean force of chemical reactions in solution. J.
Comput. Chem. 2003, 24, 1775−1781.
(27) Patel, L.; Chandrasekhar, J.; Evarts, J.; Forseth, K.; Haran, A. C.;
Ip, C.; Kashishian, A.; Kim, M.; Koditek, D.; Koppenol, S.; Lad, L.;
Lepist, E. I.; McGrath, M. E.; Perreault, S.; Puri, K. D.; Villasenor, A.
̃
G.; Somoza, J. R.; Steiner, B. H.; Therrien, J.; Treiberg, J.; Phillips, G.
Discovery of orally efficacious phosphoinositide 3-kinase δ inhibitors
with improved metabolic stability. J. Med. Chem. 2016, 59, 9228−9242.
(28) Eyring, H. The activated complex in chemical reactions. J. Chem.
Phys. 1935, 3, 107−115.
(29) Barducci, A.; Bussi, G.; Parrinello, M. Well-tempered
metadynamics: a smoothly converging and tunable free-energy
method. Phys. Rev. Lett. 2008, 100, 020603.
(30) Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W.
L. Evaluation and reparametrization of the OPLS-AA force field for
proteins via comparison with accurate quantum chemical calculations
on peptides. J. Phys. Chem. B 2001, 105, 6474−6487.
(31) De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of
molecular dynamics and related methods in drug discovery. J. Med.
Chem. 2016, 59, 4035−4061.
́
(32) Vymetal, J.; Vondrasek, J. Metadynamics as a tool for mapping
the conformational and free-energy space of peptides - The alanine
dipeptide case study. J. Phys. Chem. B 2010, 114, 5632−5642.
(33) Laio, A.; Parrinello, M. Escaping free-energy minima. Proc. Natl.
Acad. Sci. U. S. A. 2002, 99, 12562−12566.
(34) (a) Laio, A.; Gervasio, F. L. Metadynamics: a method to
simulate rare events and reconstruct the free energy in biophysics,
chemistry and material science. Rep. Prog. Phys. 2008, 71, 126601.
(b) Scalvini, L.; Vacondio, F.; Bassi, M.; Pala, D.; Lodola, A.; Rivara, S.;
Jung, K. M.; Piomelli, D.; Mor, M. Free-energy studies reveal a
possible mechanism for oxidation-dependent inhibition of MGL. Sci.
Rep. 2016, 6, 31046. (c) Russo, S.; Callegari, D.; Incerti, M.; Pala, D.;
Giorgio, C.; Brunetti, J.; Bracci, L.; Vicini, P.; Barocelli, E.; Capoferri,
L.; Rivara, S.; Tognolini, M.; Mor, M.; Lodola, A. Exploiting free-
energy minima to design novel EphA2 protein-protein antagonists:
from simulation to experiment and return. Chem. - Eur. J. 2016, 22,
8048−8052.
Ruckle, T.; Schwarz, M. K.; Shokat, K. M.; Shaw, J. P.; Williams, R. L.
̈
The p110δ crystal structure: mechanisms for selectivity and potency of
new PI(3)K inhibitors. Nat. Chem. Biol. 2010, 6, 117−124.
(18) Avgy-David, H. H.; Senderowitz, H. Toward focusing
conformational ensembles on bioactive conformations: a molecular
mechanics/quantum mechanics study. J. Chem. Inf. Model. 2015, 55,
2154−2167.
(19) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab
Initio calculation of vibrational absorption and circular dichroism
spectra using density functional force fields. J. Phys. Chem. 1994, 98,
11623−11627.
(35) Callegari, D.; Lodola, A.; Pala, D.; Rivara, S.; Mor, M.; Rizzi, A.;
Capelli, A. M. Metadynamics simulations distinguish short- and long-
residence-time inhibitors of cyclin-dependent kinase 8. J. Chem. Inf.
Model. 2017, 57, 159−169.
(20) (a) Warshel, A.; Levitt, M. Theoretical studies of enzymic
reactions: dielectric, electrostatic and steric stabilization of the
carbonium ion in the reaction of lysozyme. J. Mol. Biol. 1976, 103,
227−249. (b) Field, M. J.; Bash, P. A.; Karplus, M. A combined
quantum mechanical and molecular mechanical potential for molecular
dynamics simulations. J. Comput. Chem. 1990, 11, 700−733.
(36) Hohenstein, E. G.; Chill, S. T.; Sherrill, C. D. Assessment of the
performance of the M05-2X and M06-2X exchange-correlation
functionals for noncovalent interactions in biomolecules. J. Chem.
Theory Comput. 2008, 4, 1996−2000.
(37) Ge, Q.; Moir, L. M.; Trian, T.; Niimi, K.; Poniris, M.; Shepherd,
P. R.; Black, J. L.; Oliver, B. G.; Burgess, J. K. The phosphoinositide 3′-
K
J. Med. Chem. XXXX, XXX, XXX−XXX