Biochemistry
Page 16 of 19
1
2
3
4
5
6
[1] Howlett, A. C., Reggio, P. H., Childers, S. R., Hampson, R. E., Ulloa, N. M., and Deutsch, D. G.
(2011) Endocannabinoid tone versus constitutive activity of cannabinoid receptors, British
journal of pharmacology 163, 1329ꢀ1343.
[2] Cravatt, B. F., Demarest, K., Patricelli, M. P., Bracey, M. H., Giang, D. K., Martin, B. R., and
Lichtman, A. H. (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid
signaling in mice lacking fatty acid amide hydrolase, Proc Natl Acad Sci U S A 98, 9371ꢀ9376.
[3] Elmes, M. W., Kaczocha, M., Berger, W. T., Leung, K., Ralph, B. P., Wang, L., Sweeney, J. M.,
Miyauchi, J. T., Tsirka, S. E., Ojima, I., and Deutsch, D. G. (2015) Fatty acidꢀbinding proteins
(FABPs) are intracellular carriers for Delta9ꢀtetrahydrocannabinol (THC) and cannabidiol (CBD),
The Journal of biological chemistry 290, 8711ꢀ8721.
[4] Kaczocha, M., Glaser, S. T., and Deutsch, D. G. (2009) Identification of intracellular carriers for the
endocannabinoid anandamide, Proc Natl Acad Sci U S A 106, 6375ꢀ6380.
[5] Sanson, B., Wang, T., Sun, J., Wang, L., Kaczocha, M., Ojima, I., Deutsch, D., and Li, H. (2014)
Crystallographic study of FABP5 as an intracellular endocannabinoid transporter, Acta
Crystallogr D Biol Crystallogr 70, 290ꢀ298.
[6] Kaczocha, M., Vivieca, S., Sun, J., Glaser, S. T., and Deutsch, D. G. (2012) Fatty acidꢀbinding
proteins transport Nꢀacylethanolamines to nuclear receptors and are targets of endocannabinoid
transport inhibitors, The Journal of biological chemistry 287, 3415ꢀ3424.
[7] Kaczocha, M., Rebecchi, M. J., Ralph, B. P., Teng, Y. H., Berger, W. T., Galbavy, W., Elmes, M. W.,
Glaser, S. T., Wang, L., Rizzo, R. C., Deutsch, D. G., and Ojima, I. (2014) Inhibition of fatty acid
binding proteins elevates brain anandamide levels and produces analgesia, PloS one 9, e94200.
[8] Yu, S., Levi, L., Casadesus, G., Kunos, G., and Noy, N. (2014) Fatty acidꢀbinding protein 5 (FABP5)
regulates cognitive function both by decreasing anandamide levels and by activating the nuclear
receptor peroxisome proliferatorꢀactivated receptor beta/delta (PPARbeta/delta) in the brain, The
Journal of biological chemistry 289, 12748ꢀ12758.
[9] Furuhashi, M., and Hotamisligil, G. S. (2008) Fatty acidꢀbinding proteins: role in metabolic diseases
and potential as drug targets, Nat Rev Drug Discov 7, 489ꢀ503.
[10] Deutsch, D. G. (2016) A Personal Retrospective: Elevating anandamide (AEA) by targeting fatty
acid amide hydrolase (FAAH) and the fatty acid binding proteins (FABPs), Front Pharmacol 7,
370.
[11] Smathers, R. L., and Petersen, D. R. (2011) The human fatty acidꢀbinding protein family:
evolutionary divergences and functions, Hum Genomics 5, 170ꢀ191.
[12] Gerstner, J. R., Vanderheyden, W. M., Shaw, P. J., Landry, C. F., and Yin, J. C. (2011) Fattyꢀacid
binding proteins modulate sleep and enhance longꢀterm memory consolidation in Drosophila,
PloS one 6, e15890.
[13] Shioda, N., Yamamoto, Y., Watanabe, M., Binas, B., Owada, Y., and Fukunaga, K. (2010) Heartꢀ
type fatty acid binding protein regulates dopamine D2 receptor function in mouse brain, The
Journal of neuroscience : the official journal of the Society for Neuroscience 30, 3146ꢀ3155.
[14] Furuhashi, M., Fucho, R., Gorgun, C. Z., Tuncman, G., Cao, H., and Hotamisligil, G. S. (2008)
Adipocyte/macrophage fatty acidꢀbinding proteins contribute to metabolic deterioration through
actions in both macrophages and adipocytes in mice, The Journal of clinical investigation 118,
2640ꢀ2650.
[15] Cao, H., Gerhold, K., Mayers, J. R., Wiest, M. M., Watkins, S. M., and Hotamisligil, G. S. (2008)
Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism, Cell
134, 933ꢀ944.
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
[16] Reynolds, J. M., Liu, Q., Brittingham, K. C., Liu, Y., Gruenthal, M., Gorgun, C. Z., Hotamisligil, G.
S., Stout, R. D., and Suttles, J. (2007) Deficiency of fatty acidꢀbinding proteins in mice confers
protection from development of experimental autoimmune encephalomyelitis, Journal of
immunology (Baltimore, Md. : 1950) 179, 313ꢀ321.
[17] Peng, X., Studholme, K., Kanjiya, M. P., Luk, J., Bogdan, D., Elmes, M. W., Carbonetti, G., Tong,
S., Gary Teng, Y. H., Rizzo, R. C., Li, H., Deutsch, D. G., Ojima, I., Rebecchi, M. J., Puopolo,
ACS Paragon Plus Environment