Journal of the American Chemical Society
COMMUNICATION
’
ACKNOWLEDGMENT
This work was partially supported by Grants-in-Aid for the
Global COE Program “Science for Future Molecular Systems”
and the Elements Science and Technology Project from MEXT,
Japan, and by the Asahi Glass Foundation.
’
REFERENCES
(1) Hydrogen in Metals; Alefeld, G.; V €o lkl, J., Eds.; Springer: Berlin,
1978.
(2) (a) Kobayashi, H.; Yamauchi, M.; Kitagawa, H.; Kubota, Y.;
Kato, K.; Takata, M. J. Am. Chem. Soc. 2008, 130, 1828. (b) Kobayashi,
H.; Yamauchi, M.; Kitagawa, H.; Kubota, Y.; Kato, K.; Takata, M. J. Am.
Chem. Soc. 2010, 132, 5576. (c) Kobayashi, H.; Yamauchi, M.; Ikeda, R.;
Kitagawa, H. Chem. Commun. 2009, 4806. (d) Yamauchi, M.; Kobayashi,
H.; Kitagawa, H. ChemPhysChem 2009, 10, 2566. (e) Adams, D. B.; Wu,
G.; Nigro, S.; Chen, A. J. Am. Chem. Soc. 2009, 131, 6930. (f) Kobayashi,
H.; Yamauchi, M.; Kitagawa, H.; Kubota, Y.; Kato, K.; Takata, M. J. Am.
Chem. Soc. 2008, 130, 1818. (g) Horinouchi, S.; Yamanoi, Y.; Yonezawa,
T.; Mouri, T.; Nishihara, H. Langmuir 2006, 22, 1880. (h) Shao, H.;
Wang, Y.; Xu, H.; Li, X. J. Solid State Chem. 2005, 178, 2211. (i) Kishore,
S.; Nelson, J. A.; Adair, J. H.; Eklund, P. C. J. Alloys Compd. 2005,
389, 234. (j) Yavari, A. R.; LeMoulec, A.; de Castro, F. R.; Deledda, S.;
Friedrichs, O.; Botta, W. J.; Vaughan, G.; Klassen, T.; Fernandez, A.;
Kvick, Å. Scr. Mater. 2005, 52, 719. (k) Sun, Y.; Tao, Z.; Chen, J.;
Herricks, T.; Xia, Y. J. Am. Chem. Soc. 2004, 126, 5940. (l) Shao, H.; Xu,
H.; Wang, Y.; Li, X. J. Solid State Chem. 2004, 177, 3626. (m) Callejas,
Figure 4. PC isotherms of the Rh samples at 303 K. The isotherms were
measured along the direction of the arrows. The H/Rh ratio shows the
number of hydrogen atoms divided by the total number of Rh atoms.
storage in a metal that does not absorb hydrogen in the bulk form.
A hysteresis in the hydrogen absorption/desorption curve was
observed, providing evidence of hydride formation (RhꢀH) in the
Rh lattice. Interestingly, a size dependence of the concentration of
hydrogen (H/Rh ratio) was clearly observed. The concentrations of
hydrogen absorbed at a hydrogen pressure of 101.3 kPa were 0.13,
ꢀ
M. A.; Ansοn, A.; Benito, A. M.; Maser, W.; Fierro, J. L. G.; Sanju ꢀa n,
M. L.; Mart ꢀi nez, M. T. Mater. Sci. Eng., B 2004, 108, 120. (n) Suleiman,
0
.17, and 0.23 H/Rh for the 7.1, 4.0, and 2.4 nm diameter nano-
particles, respectively. The concentration increased with decreasing
Rh particle size, indicating that the concentration of hydrogen in Rh
could be systematically controlled by tuning the size of the nano-
particles. Surprisingly, the value of the H/M ratio of the Rh nanopar-
ticles with a diameter of 2.4 nm was equal to that of Pd nanoparticles
M.; Jisrawi, N. M.; Dankert, O.; Reetz, M. T.; Bahtz, C.; Kirchheim, R.;
Pundt, A. J. Alloys Compd. 2003, 356ꢀ357, 644. (o) Bogdanovi ꢀc , B.;
Felderhoff, M.; Kaskel, S.; Pommerin, A.; Schlichte, K.; Sch €u th, F. Adv.
Mater. 2003, 15, 1012. (p) Hanneken, J. W.; Baker, D. B.; Conradi, M. S.;
Eastman, J. A. J. Alloys Compd. 2002, 330ꢀ332, 714. (q) Sachs, C.;
Pundt, A.; Kirchheim, R. Phys. Rev. B. 2001, 64, No. 075408. (r) Pund,
A.; Sachs, C.; Winter, M.; Reetz, M. T.; Fritsch, D.; Kirchheim, R.
J. Alloys Compd. 1999, 293ꢀ295, 480. (s) Z €u ttel, A.; Nutzenadel, C.;
Schmid, G.; Chartouni, D.; Schlapbach, L. J. Alloys Compd. 1999,
2a
(H/Pd = 0.22). The nanosize provides a favorable environment for
hydrogen absorption in Rh.
It has been reported that in the PC isotherm of Pd nanopar-
ticles, an incomplete recovery occurs, that is, the PC curve of Pd
does not completely return to the starting point when the process is
2
93ꢀ295, 472. (t) Sibirtsev, D. S.; Skripov, A. V.; Natter, N.; Hempelmann,
2a
R. Solid State Commun. 1998, 108, 583. (u) Natter, H.; Wettmann, B.;
Heisel, B.; Hempelmann, R. J. Alloys Compd. 1997, 253ꢀ254, 84.
reversed. The PC isotherms of the Rh nanoparticles in this work
showed reversible adsorption/desorption behavior, as shown in
Figure 4. The complete recovery of the PC isotherms of the Rh
nanoparticles may allow for facile and effective hydrogen adsorp-
tion/desorption performance.
(v) Stuhr, U.; Wipf, H.; Udovic, T. J.; Weissm €u ller, J.; Gleiter, H.
J. Phys.: Condens. Matter 1995, 7, 219. (w) Wolf, R. J.; Lee, M. W. Phys.
Rev. Lett. 1994, 73, 557. (x) Eastman, J. A.; Thompson, L. J.; Kestel, B. J.
Phys. Rev B. 1993, 48, 84. (y) M €u tschele, T.; Kirchhelm, R. Scr. Metall.
1987, 21, 1101. (z) Kusada, K.; Yamauchi, M.; Kobayashi, H.; Kitagawa,
H.; Kubota, Y. J. Am. Chem. Soc. 2010, 132, 15896.
In summary, we have demonstrated for the first time the
existence of a nanosize-induced hydrogen-storage capacity in Rh
nanoparticles, in contrast to bulk Rh, which does not absorb
hydrogen. Moreover, the hydrogen concentration in the Rh nano-
particles was controllable by tuning the particle size. The specificsize
that induces a hydrogen-storage capability in Rh is currently under
investigation. We believe that the results reported here will con-
tribute to the development of novel nanostructured hydrogen-
absorption materials.
(
3) (a) Roduner, E. Chem. Soc. Rev. 2006, 35, 583. (b) Kubo, R.
J. Phys. Soc. Jpn. 1962, 17, 975. (c) Marzke, R. F. Catal. Rev.—Sci. Eng.
979, 19, 43.(d) Clusters and Colloids: From Theory to Applications;
1
Schmid, G., Ed.; VCH: Weinheim, Germany, 1994. (e) Henglein, A.
Chem. Rev. 1989, 89, 1861. (f) Bawendi, M. G.; Steigerwald, M. L.; Brus,
L. E. Annu. Rev. Phys. Chem. 1990, 41, 477.
(4) (a) Koga, K.; Ikeshoji, T.; Sugawara, K. Phys. Rev. Lett. 2004,
92, No. 115507. (b) Zhang, M.; Efremov, M. Y.; Schiettekatte, F.; Olson,
E. A.; Kwan, A. T.; Lai, S. L.; Wisleder, T.; Greene, J. E.; Allen, H. Phys.
Rev. B 2000, 62, 10548. (c) Blackman, M.; Sambles, J. R. Nature 1970,
’
ASSOCIATED CONTENT
226, 938.
(
5) (a) Shibata, T.; Bunker, B. A.; Zhang, Z.; Meisel, D.; Vardeman,
S
Supporting Information. Experimental details and XRD
b
C. F.; Gezelter, J. D. J. Am. Chem. Soc. 2002, 124, 11989. (b) Ouyang, G.;
Tan, X.; Wang, C. X.; Yang, G. W. Chem. Phys. Lett. 2006, 420, 65. (c)
Yasuda, H.; Mori, H.; Komatsu, M.; Takeda, K. J. Appl. Phys. 1993,
patterns. This material is available free of charge via the Internet
at http://pubs.acs.org.
73, 1100. (d) Yasuda, H.; Mori, H. Phys. Rev. Lett. 1992, 69, 3747.
’
AUTHOR INFORMATION
(6) (a) Rylander, P. N. Hydrogenation Methods; Academic Press:
New York, 1985. (b) Pearlman, W. M. In Organic Syntheses; Wiley: New
York, 1973; Collect. Vol. V, p 670. (c) Fujita, M.; Hiyama, T. In Organic
Syntheses; Wiley: New York, 1993; Collect. Vol. VIII, p 16. (d) Akao, A.;
Corresponding Author
hkobayashi@icems.kyoto-u.ac.jp; kitagawa@kuchem.kyoto-u.ac.jp
1
1036
dx.doi.org/10.1021/ja2027772 |J. Am. Chem. Soc. 2011, 133, 11034–11037