Table 1 Rhodium-catalyzed hydrogenation of olefinsa
TOF/hꢀ1 ee (%)
reflections (Rint = 0.0626), R1[I > 2s(I) = 0.0430, wR2 (all data) =
0.0761. 7b: C30H35F3FeP2Pd, M = 747.67, T = 100 K, orthorhombic,
space group P212121, a = 11.2036(16), b = 13.4658(19), c = 19.135(3) A,
V = 2886.9(7) A3, Z = 4, m(MoKa)= 0.71073, 4937 indepen-
dent reflections (Rint = 0.0912), R1[I > 2s(I) = 0.0504, wR2
(all data) = 0.1064.
Entry Ligand Substrate
Solvent
1
2
3
6b
6c
CF3CH2OH 5450
CF3CH2OH 6000
81
1 A. Togni, C. Breutel, A. Schnyder, F. Spindler, H. Landert and
A. Tijani, J. Am. Chem. Soc., 1994, 116, 4062.
2 (a) T. J. Colacot, Chem. Rev., 2003, 103, 3101; (b) L. X. Dai, T. Tu,
S. L. You, W. P. Deng and X. L. Hou, Acc. Chem. Res., 2003, 36,
659; (c) P. Barbaro, C. Bianchini, G. Giambastiani and
S. L. Parisel, Coord. Chem. Rev., 2004, 248, 2131;
(d) R. G. Arrayas, J. Adrio and J. C. Carretero, Angew. Chem.,
Int. Ed., 2006, 45, 7674.
3 C. Gambs, G. Consiglio and A. Togni, Helv. Chim. Acta, 2001, 84,
3105.
4 A. Togni, C. Breutel, M. C. Soares, N. Zanetti, T. Gerfin,
V. Gramlich, F. Spindler and G. Rihs, Inorg. Chim. Acta, 1994,
222, 213.
>99
6b
6c
MeOH
MeOH
4000
3000
88
4
>99
5 W. P. Chen, S. M. Roberts, J. Whittall and A. Steiner, Chem.
Commun., 2006, 2916.
6 W. P. Chen, W. Mbafor, S. M. Roberts and J. Whittall, J. Am.
Chem. Soc., 2006, 128, 3922.
a
Conditions: 0.5 mol% [Rh(NBD)2]PF6, 0.55 mol% 6b/6c, 1 bar H2,
room temperature.
7 (a) J. J. Adams, A. Lau, N. Arulsamy and D. M. Roddick, Inorg.
Chem., 2007, 46, 11328; (b) E. J. Velazco, A. J. M. Caffyn, X. F. Le
Goff and L. Ricard, Organometallics, 2008, 27, 2402;
(c) J. J. Adams, N. Arulsamy and D. M. Roddick, Inorg. Chim.
Acta, 2009, 362, 2056.
8 (a) P. Eisenberger, I. Kieltsch, N. Armanino and A. Togni, Chem.
Commun., 2008, 1575; (b) N. Armanino, R. Koller and A. Togni,
Organometallics, 2010, 29, 1771; (c) A. Sondenecker, J. Cvengros,
R. Aardoom and A. Togni, Eur. J. Org. Chem., 2010, DOI:
10.1002/ejoc.201001162.
catalytic reactions and demonstrates that the small and
electron-withdrawing substituent CF3 does not need to be
detrimental to both catalytic activity and stereoselectivity.
In conclusion, we have disclosed a new access to ferrocenyl
diphosphines in which both phosphorus atoms are stereogenic
and one of them bears a trifluoromethyl group. The uniqueness
of the synthesis of ligands 6 is based upon the leaving group
ability of CF3 and both the highly stereoselective ring-closure
process to afford intermediates 3 and the sequential addition
of two substituents upon ring opening. Thus, it contrasts the
9 R. Koller and A. Togni, unpublished results. Compound 1 has been
prepared using the method reported by Caffyn and co-workers
(see ref. 7b).
10 For the use of the descriptors endo/exo in ferrocenyl ligand
systems, see: A. Togni, U. Burckhardt, V. Gramlich,
P. S. Pregosin and R. Salzmann, J. Am. Chem. Soc., 1996, 118,
1031.
11 For examples, see: (a) J. Grobe, T. Grosspietsch, D. Levan,
J. Schulze, B. Krebs and M. Dartmann, J. Organomet. Chem.,
´
1990, 385, 255; (b) R. W. Alder, D. D. Ellis, J. K. Hogg, A. Martın,
well-established method developed by Juge for the synthesis
´
of P-stereogenic phosphines.15 We are continuing our efforts
towards a broader application of chiral trifluoromethyl
phosphines in asymmetric catalytic reactions.
We thank R. Koller and P. Battaglia for their assistance in
synthesis, K. Niedermann and R. Aardoom for the X-ray struc-
tural analyses, Solvias AG for hydrogenation experiments and
the Swiss CTI (Innovation Promotion Agency) for financial
support.
A. G. Orpen and P. N. Taylor, Chem. Commun., 1996, 537;
(c) B. Deschamps, L. Ricard and F. Mathey, Organometallics,
2003, 22, 1356; (d) T. Mizuta, S. Kunikata and K. Miyoshi,
J. Organomet. Chem., 2004, 689, 2624; (e) N. A. Piro,
J. S. Figueroa, J. T. McKellar and C. C. Cummins, Science,
2006, 313, 1276; (f) V. Miluykov, I. Bezkishko, A. Zagidullin,
Notes and references
O. Sinyashin, P. Lonnecke and E. Hey-Hawkins, Eur. J. Org.
Chem., 2009, 1269.
¨
z Crystallographic data were recorded on a Bruker CCD diffracto-
meter (Bruker SMART PLATFORM, with CCD detector, graphite
monochromator, Mo Ka radiation). The program SMART served for
data collection. Integration was performed with SAINT. The structure
solution and refinement on F2 were accomplished with SHELXTL 97.
Model plots were made with ORTEP32. All non hydrogen atoms were
refined freely with anisotropic displacement parameters. Due to low
data-to-parameters ratio the carbon atoms were refined anisotropically
in combination with the ISOR instruction for complex 7b. For both
structures hydrogen atoms were refined at calculated positions riding
on their carrier atoms. Weights were optimized in the final refine-
ment cycles. 3: C23H27F3FeP2, M = 478.24, T = 100 K, monoclinic,
space group P21, a = 10.743(3), b = 8.260(3), c = 13.016(4) A,
V = 1067.7(6) A3, Z = 2, m(MoKa)= 0.71073, 5342 independent
12 T. Kauffmann, E. Antfang and J. Olbrich, Chem. Ber., 1985, 118,
1022.
13 R. W. Alder, C. Canter, M. Gil, R. Gleiter, C. J. Harris,
S. E. Harris, H. Lange, A. G. Orpen and P. N. Taylor, J. Chem.
Soc., Perkin Trans. 1, 1998, 1643.
14 H. A. Bent, Chem. Rev., 1961, 61, 275. For an analysis of
stereoelectronic parameters of fluorinated phosphines, see:
A. L. Fernandez, M. R. Wilson, A. Prock and W. P. Giering,
Organometallics, 2001, 20, 3429.
15 F. Chaux, S. Frynas, H. Laureano, C. Salomon, G. Morata,
M.-L. Auclair, M. Stephan, R. Merdes, P. Richard, M. Ondel-
Eymin, J.-C. Henry, J. Bayardon, C. Darcel and S. Juge,
´
C. R. Chim., 2010, 13, 1213, and references therein.
c
1898 Chem. Commun., 2011, 47, 1896–1898
This journal is The Royal Society of Chemistry 2011