N. V. VASILIEVA ET AL.
extremely unstable and rapidly undergo subsequent reactions
(the fast ECE process), where the second and subsequent
electrons are transferred from the products. Unfortunately, one
cannot compare the values obtained of 1-X-naphthalene oxi-
dation potential with similar data for corresponding benzene
derivatives because of the lack of such data for benzenes with
electron-accepting substituents.
There are satisfactory linear correlations between oxidation
and reduction potentials of the compounds under investigation
(Fig. 3), different for compounds with electron-accepting and
with electron-donating substituents. So the E1pC values are more
sensitive to the nature of the electron-accepting substituent,
whereas the E1pOx – to the nature of the electron-donating
substituent. The only point not obeying the linear relationship is
that of 1-naphthonitrile which is likely due to its reduction
potential (vide supra).
of Electrochemistry of the Elements. Organic Section, vol. XI–XV. (Eds:
A. J. Bard, H. Lund, ) Marcel Dekker, New Jork, Basel.
[4] a) W. Kemula, R. Sioda, J. Electroanal. Chem. 1964, 7, 233–241; b) A. S.
Mendkovich, A. P. Churilina, L. V. Mikhal’chenko, V. P. Gul’tyai, Bull.
Acad. Sci. USSR, Div. Chem. Sci., Int. Ed. Engl. 1990, 39, 1348–1351; c) H.
Bock, U. Lechner-Knoblauch, Z. Naturforsch. B 1985, 40, 1463–1475;
d) G. Anthoine, J. Nascelski, B. Wilmet-Devos, Bull. Soc. Chim. Belg.
1969, 78, 465–469; e) A. Hatano, R. Hatano, Yakugaku Zasshi 1973, 93,
910–915 (Chem. Abstr. 79, 77730); f) A. S. Mendkovich, A. P. Churilina,
L. V. Mikhal’chenko, V. P. Gul’tyai, Bull. Acad. Sci. USSR, Div. Chem. Sci.,
Int. Ed. Engl. 1991, 40, 1572–1577; g) L. Ya. Kheifets, V. D. Bezuglyi,
J. Gen. Chem. USSR, Int. Ed. Engl. 1971, 41, 507–511; h) N. M.
Przhiyalgovskaya, L. Ya. Kheifets, L. I. Dmitrievskaya, V. D. Bezuglyi,
J. Gen. Chem. USSR, Int. Ed. Engl. 1971, 41, 1114–1117; j) V. V. Yanilkin,
N. I. Maksimyuk, E. I. Gritsenko, Yu. M. Kargin, Bull. Russ. Acad. Sci., Div.
Chem. Sci., Int. Ed. Engl. 1992, 41, 1363–1367; k) Yu. M. Kargin, Yu. G.
Budnikova, V. V. Yanilkin, J. Gen. Chem. USSR, Int. Ed. Engl. 1991, 61,
1816–1820; l) A. Streitwieser, J. Schwager, J. Phys. Chem. 1962, 66,
2316–2320; m) V. S. Dunyashev, E. A. Polenov, N. E. Minina, V. M.
Kazakova, G. A. Grigor’ev, L. M. Yagupol’skii, J. Gen. Chem. USSR, Int.
Ed. Engl. 1988, 58, 178–181; n) E. Brillas, J. M. Costa, An. Quim. Ser. A
1980, 76, 321–324; o) C. Koper, L. W. Jenneskens, M. Sarobe, Tetra-
hedron Lett. 2002, 43, 3833–3836; p) P. Given, M. Peover, J. Chem. Soc.
1960, 385–387; q) T. M. Krygowsky, M. Stencel, Z. Galus, J. Electroanal.
Chem. 1972, 39, 395–405; r) C. Lagrost, D. Carrie, M. Vaultier, P. Hapiot,
J. Phys. Chem. A 2003, 107, 745–752; s) M. A. Fox, C. C. Chen, J. N. N.
Younathan, J. Org. Chem. 1984, 49, 1969–1974.
CONCLUSIONS
Thus, electrochemical reduction and oxidation potentials of a
series of 1-substituted naphthalenes have been measured by the
CV method in unified conditions. The first reduction peak of
the most of compounds investigated has been established to be
due to a one-electron transfer to form respective stable RAs. For
the first time, their ESR spectra have been registered and
interpreted, and also their half-life times have been estimated.
Unlike that of electrochemical reduction, the first stage of
electrochemical oxidation of 1-substituted naphthalenes has
been revealed to be irreversible and corresponding to a multiple
electron transfer.
[5] a) E. S. Pysh, N. C. Yang, J. Am. Chem. Soc. 1963, 85, 2124–2130; b) A.
Zweig, R. H. Mauer, B. G. Roberts, J. Org. Chem. 1967, 32, 1322–1329;
c) C. Parkanyi, P. Zahradnik, Collect. Czech. Chem. Commun. 1965, 30,
4287–4296; d) M. Sakamoto, X. Cai, M. Hara, M. Fujitsuka, T. Majima,
J. Am. Chem. Soc. 2004, 126, 9709–9714; e) P. H. Milne, D. D. M.
Wayner, D. P. DeCosta, J. A. Pincock, Can. J. Chem. 1992, 70, 121–127.
[6] N. V. Vasil’eva, V. F. Starichenko, V. A. Koptyug, J. Org. Chem. USSR, Int.
Ed. Engl. 1987, 23, 921–929.
¨
[7] K. Mobius, Z. Naturforsch. A 1965, 20, 1093–1117.
[8] a) K. K. Sharma, R. J. Boyd, J. Chem. Soc., Faraday Trans. II 1979, 75,
494–499; b) S. Brumby, J. Magn. Reson. 1980, 40, 157–165.
[9] P. Furderer, F. Gerson, Helv. Chim. Acta 1976, 59, 2492–2498.
[10] D. N. Laikov, Chem. Phys. Lett. 1997, 281, 151–156.
[11] N. Donaldson, The Chemistry and Technology of Naphthalene Com-
pounds, E. Arnold & Co., London, 1958. 512 p.
[12] F. F. Blicke, J. Am. Chem. Soc. 1927, 49, 2843–2849.
[13] G. M. Coppinger, J. Am. Chem. Soc. 1954, 76, 1372–1373.
[14] H. C. Brown, A. Tsukamoto, J. Am. Chem. Soc. 1964, 86, 1089–1095.
[15] P. J. Card, F. E. Friedli, H. Shechter, J. Am. Chem. Soc. 1983, 105,
6104–6114.
[16] F. F. Blicke, C. E. Maxwell, J. Am. Chem. Soc. 1939, 61, 1780–1783.
[17] N. V. Vasil’eva, V. F. Starichenko, L. N. Shchegoleva, Zh. Org. Khim.
1998, 34, 1650–1659.
[18] R. Improta, V. Barone, Chem. Rev. 2004, 104, 1231–1253.
[19] I. I. Bilkis, T. A. Vaganova, A. J. Denisov, V. D. Shteingarts, Zh. Org. Khim.
1987, 23, 2062–2070.
REFERENCES
[1] E. V. Panteleeva, M. Yu. Lukyanova, L. M. Pokrovsky, V. D. Shteingarts,
Russ. Chem. Bull. 2007, N6, 1069–1077.
[2] a) I. I. Bilkis, V. D. Shteingarts, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim.,
Int. Ed. Engl. 1987, 17, 105; b) T. A. Vaganova, E. V. Panteleeva, V. D.
Shteingarts, Reductive Alkylation of Arenecarbonitriles: Synthetic
Aspects, in The Panorama of Modern Chemistry in Russia. Modern
Organic Synthesis, Khimiya, Moscow, 2003, 293 (in Russian).
[3] a) C. K. Mann, K. K. Barnes, Electrochemical Reactions In Nonaqueous
Systems, Marcel Dekker, New York, 1970. (rus-479 p); b) Encyclopedia
Copyright ß 2007 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2008, 21 73–78