COMMUNICATIONS
Table 2. Determination of the electrophilicity parameter
allylpalladium complex 1b.
E for the
This is exemplified by the fact that the reaction of 1a with
allyltributylstannane, which does not follow clear-cut second-
order kinetics, is approximately 104 times faster than pre-
dicted by Equation (1). The NMR
spectroscopic monitoring of this reac-
tion showed the formation of the bisall-
yl complex 6,[17] indicating the attack of
Nucleophile
N
s
lgk[a]
0.45
0.65
1.24
E
3d
3e
3 f
9.49[b]
11.7[b]
10.5[c]
0.93[b]
0.93[b]
1
10.0
11.0
9.3
[a] From Table 1 of this work. [b] Ref. 15. [c] H. Mayr, A. R. Ofial, K.-H.
Müller, N. Hering, unpublished results.
allylstannane at the palladium center,
in accord with literature reports.[18]
Equation (1) and Figure 2, therefore,
allow one to predict that only nucleo-
philes with N > 6 ± 7 may attack directly at the allylic ligand of
1a and 1b. If reactions with weaker nucleophiles take place,
they must proceed by initial attack at the metal center, which
has consequences for the regio- and stereoselectivities.
of large structural variety (Table 2). The relative reactivities
of the complexes 1a and 1b towards diethylamine and pi-
peridine (Table 1) yield E(1a) ꢀ 12.5. Because of the higher
electron-donating ability of P(Ph)3 compared to P(OPh)3, 1a is
two orders of magnitude less electrophilic than 1b.
The E parameters thus derived now allow one to compare
the reactivities of 1a and 1b with those of other electrophiles.
As shown in Figure 2, the palladium complexes 1a and 1b are
Received: August 7, 1998 [Z12264IE]
German version: Angew. Chem. 1999, 111, 356 ± 358
Keywords: allyl complexes
´ carbocations ´ kinetics ´
palladium ´ reaction mechanisms
[1] a) B. M. Trost, T. R. Verhoeven in Comprehensive Organometallic
Chemistry, Vol. 8 (Eds.: G. Wilkinson, F. G. A. Stone, E. W. Abel),
Pergamon, Oxford, 1982, pp. 799 ± 938; b) S. Godleski in Compre-
hensive Organic Synthesis, Vol. 4 (Eds.: B. M. Trost, I. Fleming, M. F.
Semmelhack), Pergamon, Oxford, 1991, pp. 585 ± 659; c) B. M. Trost,
D. L. Van Vranken, Chem. Rev. 1996, 96, 395 ± 422; d) P. von Matt,
G. C. Lloyd-Jones, A. B. E. Minidis, A. Pfaltz, L. Macko, M. Neu-
burger, M. Zehnder, H. Rüegger, P. S. Pregosin, Helv. Chim. Acta
1995, 78, 265 ± 284; e) J. Sprinz, M. Kiefer, G. Helmchen, M. Reggelin,
G. Huttner, O. Walter, L. Zsolnai, Tetrahedron Lett. 1994, 35, 1523 ±
1526; f) A. Stolle, J. Ollivier, P. P. Piras, J. Salaün, A. de Meijere, J. Am.
Chem. Soc. 1992, 114, 4051 ± 4067.
[2] a) P. S. Manchand, H. S. Wong, J. F. Blount, J. Org. Chem. 1978, 43,
4769 ± 4774; b) N. W. Murall, A. J. Welch, J. Organomet. Chem. 1986,
301, 109 ± 130; c) D. P. Grant, N. W. Murall, A. J. Welch, J. Organomet.
Chem. 1987, 333, 403 ± 414.
[3] a) H. Mayr, M. Patz, Angew. Chem. 1994, 106, 990 ± 1010; Angew.
Chem. Int. Ed. Engl. 1994, 33, 938 ± 957; b) H. Mayr, O. Kuhn, M. F.
Gotta, M. Patz, J. Phys. Org. Chem. 1998, 11, 642 ± 654.
[4] Physical properties: O. Kuhn, Dissertation, Universität München,
1998.
[5] P. R. Auburn, P. B. Mackenzie, B. Bosnich, J. Am. Chem. Soc. 1985,
107, 2033 ± 2046.
[6] R. R. Schrock, J. A. Osborn, J. Am. Chem. Soc. 1971, 93, 3089 ± 3091.
[7] B. kermark, B. Krakenberger, S. Hansson, A. Vitagliano, Organo-
metallics 1987, 6, 620 ± 628.
[8] H. Mayr, R. Schneider, C. Schade, J. Bartl, R. Bederke, J. Am. Chem.
Soc. 1990, 112, 4446 ± 4454.
[9] a) B. Crociani, S. Antonaroli, F. Di Bianca, L. Canovese, F. Visentin, P.
Uguagliati, J. Chem. Soc. Dalton Trans. 1994, 1145 ± 1151; b) P. B.
Mackenzie, J. Whelan, B. Bosnich, J. Am. Chem. Soc. 1985, 107, 2046 ±
2054.
[10] In contrast, the first step of the aminations of allylpalladium
complexes containing stronger donor ligands (chloride, amines) is
reversible, and the deprotonation of the allylammonium ions (e.g. 5)
becomes rate-determining, resulting in a second-order dependence of
the rates on amine concentration: A. Vitagliano, B. kermark, J.
Organomet. Chem. 1988, 349, C22 ± C26.
[11] A ratio of 93:7 to 86:14 for trans:cis attack was observed for the
additions of secondary amines to (4-methoxy-1,2,3-h3-cyclohexenyl)-
palladium tetrafluoroborates: J.-E. Bäckvall, R. E. Nordberg, K.
Zetterberg, B. kermark, Organometallics 1983, 2, 1625 ± 1629.
[12] C. Carfagna, L. Mariani, A. Musco, G. Sallese, R. Santi, J. Org. Chem.
1991, 56, 3924 ± 3927.
Figure 2. Combination of the electrophilicity and the nucleophilicity scale.
considerably weaker electrophiles than dicobalt-coordinated
propargyl cations,[14c] the tropylium ion,[3a] or iminium ions.[16]
By using the respective electrophilicities as criteria, 1b
corresponds to the tricarbonylironcycloheptadienylium
ion,[14a] while 1a corresponds to the N-methylquinolinium ion.
The approximation s ꢀ 1, which holds for most nucleo-
philes, implies the rule of thumb that electrophiles and
nucleophiles which are located on an equal level in Figure 2
(N E 5) will combine slowly at room temperature,
whereas electrophiles will not react with nucleophiles which
are located above them.[3] The applicability of this rule to
reactions of allylpalladium complexes is limited, however:
Because of the ambident electrophilic character of 1, reac-
tions with nucleophiles may either occur at the allyl ligand or
at the metal center. The latter reaction is not covered by
Equation (1).
Angew. Chem. Int. Ed. 1999, 38, No. 3
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999
1433-7851/99/3803-0345 $ 17.50+.50/0
345