Biochemistry
Article
(
14) Kast, P., Asif-Ullah, M., and Hilvert, D. (1996) Is chorismate
ACKNOWLEDGMENTS
■
mutase a prototypic entropy trap? -- activation parameters for the
Bacillus subtilis enzyme. Tetrahedron Lett. 37, 2691−1694.
Diffraction data were collected at the Stanford Synchrotron
Radiation Laboratory, a national user facility operated by
Stanford University on behalf of the U.S. Department of
Energy, Office of Basic Energy Sciences. The SSRL Structural
Molecular Biology Program is supported by the Department of
Energy, Office of Biological and Environmental Research, and
by the National Institutes of Health, National Center for
Research Resources, Biomedical Technology Program, and the
National Institute of General Medical Sciences. We thank the
staff at the Stanford Synchrotron Radiation Laboratory for their
support and assistance. We are grateful to Drs. T.C. Gamblin
and R. N. De Guzman for equipment use and to Dr. R. L.
Schowen for insightful discussions.
(15) Kast, P., Asif-Ullah, M., Jiang, N., and Hilvert, D. (1996)
Exploring the active site of chorismate mutase by combinatorial
mutagenesis and selection: the importance of electrostatic catalysis.
Proc. Natl. Acad. Sci. U.S.A. 93, 5043−5048.
(16) Kienhofer, A., Kast, P., and Hilvert, D. (2003) Selective
stabilization of the chorismate mutase transition state by a positively
charged hydrogen bond donor. J. Am. Chem. Soc. 125, 3206−3207.
(17) Liu, D. R., Cload, S. T., Pastor, R. M., and Schultz, P. G. (1996)
Analysis of Active Site Residues in Escherichia coli Chorismate Mutase
by Site-Directed Mutagenesis. J. Am. Chem. Soc. 118, 1789−1790.
(
18) Ranaghan, K. E., and Mulholland, A. J. (2004) Conformational
effects in enzyme catalysis: QM/MM free energy calculation of the
NAC’ contribution in chorismate mutase. Chem. Commun., 1238−
1239.
(19) Ranaghan, K.E., Ridder, L., Szefczyk, B., Sokalski, W. A.,
’
ABBREVIATIONS
PchB, isochorismate−pyruvate lyase from Pseudomonas aeruginosa;
EcCM, chorismate mutase from E. coli.
■
Hermann, J. C., and Mulholland, A. J. (2004) Transition state
stabilization and substrate strain in enzyme catalysis: ab initio QM/
MM modelling of the chorismate mutase reaction. Org. Biomol. Chem.
REFERENCES
■
2
, 968−980.
20) Strajbl, M., Shurki, A., Kato, M., and Warshel, A. (2003)
(
1) Gaille, C., Kast, P., and Haas, D. (2002) Salicylate biosynthesis in
(
Pseudomonas aeruginosa. Purification and characterization of PchB, a
novel bifunctional enzyme displaying isochorismate pyruvate-lyase and
chorismate mutase activities. J. Biol. Chem. 277, 21768−21775.
2) DeClue, M. S., Baldridge, K. K., Kunzler, D. E., Kast, P., and
Hilvert, D. (2005) Isochorismate Pyruvate Lyase: A Pericyclic
Apparent NAC effect in chorismate mutase reflects electrostatic
transition state stabilization. J. Am. Chem. Soc. 125, 10228−10237.
(
Olsson, M. H. (2006) Electrostatic basis for enzyme catalysis. Chem.
Rev. 106, 3210−3235.
21) Warshel, A., Sharma, P. K., Kato, M., Xiang, Y., Liu, H., and
(
Reaction Mechanism? J. Am. Chem. Soc. 127, 15002−15003.
(
3) Marti, S., Andres, J., Moliner, V., Silla, E., Tunon, I., and Bertran,
(22) Claeyssens, F., Harvey, J. N., Manby, F. R., Mata, R. A.,
Mulholland, A. J., Ranaghan, K. E., Schutz, M., Thiel, S., Thiel, W., and
Werner, H. J. (2006) High-accuracy computation of reaction barriers
in enzymes. Angew. Chem., Int. Ed. 45, 6856−6859.
J. (2009) Mechanism and plasticity of isochorismate pyruvate lyase: a
computational study. J. Am. Chem. Soc. 131, 16156−16161.
(
4) Zaitseva, J., Lu, J., Olechoski, K. L., and Lamb, A. L. (2006) Two
crystal structures of the isochorismate pyruvate lyase from
Pseudomonas aeruginosa. J. Biol. Chem. 281, 33441−33449.
(23) Kast, P., Grisostomi, C., Chen, I. A., Li, S., Krengel, U., Xue, Y.,
and Hilvert, D. (2000) A strategically positioned cation is crucial for
efficient catalysis by chorismate mutase. J. Biol. Chem. 275, 36832−
36838.
(
5) Luo, Q., Olucha, J., and Lamb, A. L. (2009) Structure-function
analyses of isochorismate-pyruvate lyase from Pseudomonas aeruginosa
suggest differing catalytic mechanisms for the two pericyclic reactions
of this bifunctional enzyme. Biochemistry 48, 5239−5245.
(24) Zhang, S., Kongsaeree, P., Clardy, J., Wilson, D. B., and Ganem,
B. (1996) Site-directed mutagenesis of monofunctional chorismate
mutase engineered from the E. coli P-protein. Bioorg. Med. Chem. 4,
1015−1020.
(
6) Gustin, D. J., Mattei, P., Kast, P., Wiest, O., Lee, L., Cleland,
W. W., and Hilvert, D. (1999) Heavy Atom Isotope Effects Reveal a
Highly Polarized Transition State for Chorismate Mutase. J. Am. Chem.
Soc. 121, 1756−1757.
(
25) Schmidt, K., and Leistner, E. (1995) Microbial Production of
+)-trans-Isochorismic Acid. Biotechnol. Bioeng. 45, 285−291.
26) Rieger, C. E., and Turnbull, J. L. (1996) Small scale biosynthesis
(
(
7) Hur, S., and Bruice, T. C. (2002) The mechanism of catalysis of
(
the chorismate to prephenate reaction by the Escherichia coli mutase
enzyme. Proc. Natl. Acad. Sci. U.S.A. 99, 1176−1181.
and purification of gram quantities of chorismic acid. Prep. Biochem.
Biotechnol. 26, 67−76.
(
8) Hur, S., and Bruice, T. C. (2003) The near attack conformation
(27) Gondry, M., Lautru, S., Fusai, G., Meunier, G., Menez, A., and
approach to the study of the chorismate to prephenate reaction. Proc.
Natl. Acad. Sci. U.S.A. 100, 12015−12020.
Genet, R. (2001) Cyclic dipeptide oxidase from Streptomyces noursei.
Isolation, purification and partial characterization of a novel, amino
acyl alpha,beta-dehydrogenase. Eur. J. Biochem. 268, 1712−1721.
(
9) Hur, S., and Bruice, T. C. (2003) Just a near attack conformer for
catalysis (chorismate to prephenate rearrangements in water, antibody,
enzymes, and their mutants). J. Am. Chem. Soc. 125, 10540−10542.
(28) Segel, I. H. (1975) Enzyme Kinetics: Behavior and Analysis of
Rapid Equilibium and Steady State Enzyme Systems, John Wiley & Sons,
New York.
(
10) Hur, S., and Bruice, T. C. (2003) Comparison of formation of
reactive conformers (NACs) for the Claisen rearrangement of
chorismate to prephenate in water and in the E. coli mutase: the
efficiency of the enzyme catalysis. J. Am. Chem. Soc. 125, 5964−5972.
(
(
29) Kabsch, W. (2010) Acta Crystallogr. D66, 125−132.
30) McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C., and Read,
R. J. (2005) Likelihood-enhanced fast translation functions. Acta
Crystallogr. D61, 458−464.
(
11) Zhang, X., Zhang, X., and Bruice, T. C. (2005) A definitive
mechanism for chorismate mutase. Biochemistry 44, 10443−10448.
12) Claeyssens, F., Ranaghan, K. E., Manby, F. R., Harvey, J. N., and
(31) Emsley, P., and Cowtan, K. (2004) Coot: model-building tools
(
for molecular graphics. Acta Crystallogr. D60, 2126−2132.
Mulholland, A. J. (2005) Multiple high-level QM/MM reaction paths
demonstrate transition-state stabilization in chorismate mutase:
correlation of barrier height with transition-state stabilization. Chem.
Commun., 5068−5070.
(32) Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I.
W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-
Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R.
J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P.
H. (2010) PHENIX: a comprehensive Python-based system for
macromolecular structure solution. Acta Crystallogr. D66, 213−221.
(
13) Cload, S. T., Liu, D. R., Pastor, R. M., and Schultz, P. G. (1996)
Mutagenesis Study of Active Site Residues in Chorismate Mutase from
Bacillus subtilis. J. Am. Chem. Soc. 118, 1787−1788.
7
206
dx.doi.org/10.1021/bi200599j|Biochemistry 2011, 50, 7198−7207