8
046 Inorganic Chemistry, Vol. 49, No. 17, 2010
Llusar et al.
Scheme 1
complexes involves exclusively the sulfur ligands where the
Mo centers are mere spectators. Hence, reduction of Mo3S7
molecules in solution to be gently transferred to the gas-
15,16
phase.
For example, gas-phase generation and reactivity
clusters proceeds through μ-S to μ-S transformation to
and photoelectron spectroscopy studies of ESI-generated group
2
17
afford the corresponding Mo S complexes. As far as the
6 oxides or group 6/dithiolene complexes have extensively
3
4
18,19
investigated.
oxidation behavior of the Mo S clusters is concerned, we
3
7
have recently shown that coordination of bis(dithiolenes) to
Mo3S7 clusters provides oxidation activity suggesting a
dominant contribution of the dithiolene ligand to the highest
occupied molecular orbital (HOMO) of the Mo S /dithiolene
Herein, we report an experimental study on the gas-phase
production and the fragmentation reactions of group 6 sulfides
featuring Mo S and Mo S cluster cores (see Scheme 1) using
3
7
3 4
ESI and ESI tandem mass spectrometry. C -symmetrized tri-
3
7
3
10-12
cluster complex.
nuclear Mo S clusters constitute a large family of inorganic
3
7
The understanding of electron transfer reactions involving
group 6/sulfide/dithiolene complexes is crucial to anticipate the
preferred redox pathway of the target species and therefore to
control the products formed as well as their yields. For example,
compounds in which the cluster core is coordinated to a wide
spectrum of ligands with applications in multidisciplinary
20
fields. Mo
core capped by a μ
illustrated in Scheme 1. Additionally, three bridging μ-S
S
clusters present an equilateral Mo
triangular
3
7
3
-S atom that lies above the metal plane as
3
2-
the mechanism of the induced redox reaction between MoS4
2
and organic disulfides have been elucidated providing valuable
clues to the rational preparation of new lower valent group 6
groups or μ-Sax groups connect adjacent metal atoms, with
three sulfur atoms occupying equatorial positions (Seq, essen-
5,13
tially in the Mo plane), and three axial sulfur atoms (S ,
sulfur-containing species.
However, investigating electron
3
ax
located out of the metal plane) on opposite sides to that of the
μ -S capping atom. In addition, the study of trinuclear Mo S
molybdenum clusters is also motivated by their putative pre-
transfer processes at the molecular level remains a task of great
complexity, mainly because of the transient nature of the
intermediates involved, the concerted nature of the process,
orthepresenceofsidereactions. Onewaytoaddressthemecha-
nistic elucidation of a chemical process at the molecular level
consists in paralleling the chemical process observed both in
solution and solid state, in a well-defined gas-phase environ-
ment in which solvent, counteranions, aggregation processes, or
side reactions are absent making the study much simpler. In this
context, tandem mass-spectrometric methods in conjunction
with theoretical calculations have proved useful in elucidating
3
3 9
sence as intermediates during catalytic MoS -based hydro-
x
desulfurization reactions, this Mo3S unit being a widely
9
(17) (a) Waters, T.; O’Hair, R. A. J.; Wedd, A. G. J. Am. Chem. Soc. 2003,
1
2
25, 3384. (b) Feyel, S.; Waters, T.; O'Hair, R. A. J.; Wedd, A. G. Dalton Trans.
004, 4010. (c) Yang, X.; Waters, T.; Wang, X. B.; O'Hair, R. A. J.; Wedd, A. G.;
Dixon, D. A.; Wang, L. S. J. Phys. Chem. A 2004, 108, 10089. (d) Waters, T.;
O'Hair, R. A. J.; Wedd, A. G. Inorg. Chem. 2005, 44, 3356. (e) Zhai, H. J.; Huang,
X.; Waters, T.; Wang, X. B.; O'Hair, R. A. J.; Wedd, A. G.; Wang, L. S. J. Phys.
Chem. A 2005, 109, 10512. (f ) Waters, T.; Wang, X. B.; Li, S. G.; Kiran, B.;
Dixon, D. A.; Wang, L. S. J. Phys. Chem. A 2005, 109, 11771. (g) Waters, T.;
Huang, X.; Wang, X. B.; Woo, H. K.; O'Hair, R. A. J.; Wedd, A. G.; Wang, L. S. J.
Phys. Chem. A 2006, 110, 10737. (h) Vicent, C.; Feliz, M.; Llusar, R. J. Phys.
Chem. A 2008, 112, 12550. (i) Llusar, R.; Sorribes, I.; Vicent, C. J. Clust. Sci.
14,15
mechanistic aspects.
In particular, electrospray ionization
mass spectrometry (ESI-MS) and its tandem version have
become increasingly popular as an analytical tool in inorganic
and organometallic chemistry because it allows pre-existing
2
009, 20, 177. ( j) Ma, M. T.; Waters, T.; Beyer, K.; Palamarczuk, R.; Richardt,
P. J. S.; O'Hair, R. A. J.; Wedd, A. G. Inorg. Chem. 2009, 48, 598. (k) Vila-Nadal,
L.; Rodriguez-Fortea, A.; Yan, L. K.; Wilson, E. F.; Cronin, L.; Poblet, J. M.
Angew. Chem., Int. Ed. 2009, 48, 5452.
(
10) Garriga, J. M.; Llusar, R.; Uriel, S.; Vicent, C.; Usher, A. J.; Lucas,
N. T.; Humphrey, M. G.; Samoc, M. Dalton Trans. 2003, 4546.
11) (a) Llusar, R.; Uriel, S.; Vicent, C.; Coronado, E.; Gomez-Garcia,
C. J.; Clemente-Juan, J. M.; Braida, B.; Canadell, E. J. Am. Chem. Soc. 2004,
26, 12076. (b) Alberola, A.; Llusar, R.; Triguero, S.; Vicent, C.; Sokolov, M. N.;
G ꢀo mez-Garcia, C. J. Mater. Chem. 2007, 17, 3440.
12) Llusar, R.; Triguero, S.; Polo, V.; Vicent, C.; Gomez-Garcia, C.;
Jeannin, O.; Fourmigue, M. Inorg. Chem. 2008, 47, 9400.
13) Harmer, M. A.; Halbert, T. R.; Pan, W.-H.; Coyle, C. L.; Cohen,
S. A.; Stiefel, E. I. Polyhedron 1986, 5, 341.
14) (a) Alcami, M.; Mo, O.; Ya n~ ez, M. Mass Spectrom. Rev. 2001, 20,
95. (b) Armentrout, P. B. Int. J. Mass Spectrom. 2003, 227, 289. (c) Bohme,
(
18) (a) Dessapt, R.; Simonnet-Jegat, C.; Mallard, A.; Lavanant, H.;
(
Marrot, J.; Secheresse, F. Inorg. Chem. 2003, 42, 6425. (b) Waters, T.;
Blanksby, S. J.; Zhang, L. Y.; O'Hair, R. A. J. Org. Biomol. Chem. 2004, 2,
1
1
90. (c) Waters, T.; Wang, X. B.; Yang, X.; Zhang, L.; O'Hair, R. A. J.; Wang,
L. S.; Wedd, A. G. J. Am. Chem. Soc. 2004, 126, 5119. (d) Lavanant, H.;
Fressigne, C.; Simonnet-Jegat, C.; Dessapt, R.; Mallard, A.; Secheresse, F.;
Sellier, N. Int. J. Mass Spectrom. 2005, 243, 205.
(
(
(
19) Llusar, R.; Triguero, S.; Vicent, C.; Sokolov, M. N.; Domercq, B.;
Fourmigue, M. Inorg. Chem. 2005, 44, 8937.
20) (a) Sakane, G.; Shibahara, T. Transition Metal Sulfur Chemistry:
(
(
1
Biological and Industrial Significance; Stiefel, E. I., Matsumoto, K., Eds.;
American Chemical Society: Washington, DC, 1996; Vol. 653, p 225; (b) Saito,
T. Adv. Inorg. Chem. 1997, 44, 45. (c) Llusar, R.; Vicent, C. Trinuclear
Molybdenum and Tungsten Cluster Chalcogenides: From Solid State to
Molecular Materials. Inorganic Chemistry in Focus III; Meyer, G.; Naumann,
D., Wesemann, L., Eds.; Wiley-VCH Verlag: Weinheim, Germany, 2006; p 105;
(d) Fedorov, V. E.; Mironov, Y. V.; Naumov, N. G.; Sokolov, M. N.; Fedin, V. P.
Russ. Chem. Rev. 2007, 76, 529. (e) Llusar, R.; Vicent, C. Coord. Chem. Rev.
2010, 254, 1534.
D. K.; Schwarz, H. Angew. Chem., Int. Ed. 2005, 44, 2336. (d) Schr €o der, D.;
Schwarz, H. Top. Organomet. Chem. 2007, 22, 1. (e) Johnson, G. E.; Tyo, E. C.;
Castleman, J., A. W. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 18108. (f )
Johnson, G. E.; Mitric, R.; Bonacic-Koutecky, V.; Castleman, A. W., Jr. Chem.
Phys. Lett. 2009, 475, 1. (g) Roithova, J.; Schr €o der, D. Coord. Chem. Rev. 2009,
2
53, 666. (h) Roithova, J.; Schr €o der, D. Chem. Rev. 2010, 110, 1170.
(
(
15) O’Hair, R. A. J. Chem. Commun 2006, 1469.
16) (a) Chen, P. Angew. Chem., Int. Ed. 2003, 42, 2832. (b) Bernhardt, T. M.
Int. J. Mass Spectrom. 2005, 243, 1.