9
508
G. A. Hogan et al. / Tetrahedron Letters 43 (2002) 9505–9508
pared to chloride ion. Thus, PhNO/PhNHOH could
coordinate at the vacant site created by the dissociation
of acetonitrile. The resulting complex (of PhNO or
azodioxide, ArN(O)N(O)Ar) could react with olefin with
transfer of PhNO to generate an allyl hydroxylamine
complex. Dissociation of the later and subsequent
deoxygenation by Cu(I) would afford allyl amine and
Cu(II), which in turn can react with PhNHOH to
regenerate the reactive intermediate. The slow deoxygena-
tion step seems to be responsible for the modest yields
of allyl amine.
References
1. (a) Parshall, G. W. Homogeneous Catalysis, Wiley, New
York, 1980; pp. 101–119; 129–135; 185–207; (b) Sheldon,
R. A.; Kochi, J. K. Metal-catalyzed Oxidations of Organic
Compounds; Academic Press: New York, 1981; pp. 271–
279.
2. (a) Sharpless, K. B.; Hori, T. J. Org. Chem. 1976, 41, 176;
(b) Kresze, G.; Braxmeier, H.; Munsterer, H. Org. Syn.
1987, 65, 159.
3
. (a) Sharpless, K. B.; Hori, T.; Truesdale, L. K.; Dietrich,
C. O. J. Am. Chem. Soc. 1976, 98, 269; (b) Bruncko, M.;
Khuong, T.-A. V.; Sharpless, K. B. Angew. Chem., Int. Ed.
Engl. 1996, 35, 454.
3. Summary
4. Liebeskind, L. S.; Sharpless, K. B.; Wilson, R. D.; Ibers,
J. A. J. Am. Chem. Soc. 1978, 100, 7061.
Complex 1 catalyzes the regioselective amination of
olefins using phenyl hydroxylamine as an aminating
agent. Although further insight into the mechanism of this
process is being sought, the absence of free nitrosobenzene
and nitrene argue in favor of an ‘on the metal’ reaction
pathway.
5. (a) Brimble, M. A.; Heathcock, C. H. J. Org. Chem. 1993,
58, 5261; (b) Brimble, M.; Heathcock, C. H.; Nobin, G.
N. Tetrahedron: Asymmetry 1996, 7, 2007; (c) Leblanc, Y.;
Zamboni, R.; Berstein, M. A. J. Org. Chem. 1991, 56, 1971.
6. (a) Keck, G. E.; Webb, R. R.; Yates, J. B. Tetrahedron 1981,
37, 4007;(b)Ensley, H. E.;Mahadevan, S. TetrahedronLett.
1
1
988, 3255; (c) Knight, G. T. J. Chem. Soc., Chem. Commun.
970, 1016; (d) Banks, R. E.; Haszeldine, R. N.; Miller, P.
J. Tetrahedron Lett. 1970, 11, 4417; (e) Seymour, C. A.;
Greene, F. D. J. Org. Chem. 1982, 47, 5226.
4. Experimental
7
8
. Whitesell, J. K.; Yaser, H. K. J. Am. Chem. Soc. 1991, 113,
1
8
General: The alkene in run 6 (Table 1), phenylhy-
3526.
1
9
20
droxylamine, 2,4-dinitrophenylhydroxylamine
and
were pre-
pared according to literature methods. Anhydrous
,4-dioxane (Aldrich), [Cu(CH CN) ]PF (Strem), and
. (a) Srivastava, A.; Ma, Y.; Pankayatselvan, R.; Dinges, W.;
Nicholas, K. M. J. Chem. Soc., Chem. Commun. 1992, 853;
2
1
2
,3,5,6-tetrafluorophenylhydroxylamine
(
b) Srivastava, R. S.; Nicholas, K. M. J. Org. Chem. 1994,
1
3
4
6
59, 5365.
all other reactants were obtained commercially. GC/
MS and MS spectra were obtained at 70 eV (EI). GC
analyses utilized a 3% column packed with 3% OV101.
9. (a) Srivastava, R. S.; Nicholas, K. M. Tetrahedron Lett.
1994, 35, 8739; (b) Srivastava, R. S.; Khan, M. A.; Nicholas,
K. M. J. Am. Chem. Soc. 1996, 118, 3311; (c) Srivastava,
R. S.; Nicholas, K. M. J. Am. Chem. Soc. 1997, 119, 3302;
(d) Johannsen, M.; Jorgenson, K. A. J. Org. Chem. 1994,
59, 214; (e) Johannsen, M.; Jorgenson, K. A. J. Org. Chem.
1995, 60, 5979.
10. (a) Cenini, S.; Ragaini, F.; Tollari, S.; Paone, D. J. Am.
Chem. Soc. 1996, 118, 11964; (b) Ragaini, F.; Cenini, S.;
Tollari, S.; Tummolillo, G.; Beltrami, R. Organometallics
1999, 18, 928.
11. (a) Srivastava, R. S.; Nicholas, K. M. J. Chem. Soc., Chem.
Commun. 1998, 2705; (b) Kolel-Veetil, M.; Khan, M. A.;
Nicholas, K. M. Organometallics 2000, 19, 3754.
12. Srivastava, R. S.; Kolel-Veetil, M.; Nicholas, K. M.
Tetrahedron Lett. 2002, 43, 931.
Catalytic allylic amination of olefins: All reactions
were performed under dry argon. The general method
for the preparation of compound 4 is as described.
The olefin, a-methylstyrene (7 mmol) and 1 (0.15
mmol) were added to 1,4-dioxane (2 mL) and heated
to reflux (80–100°C). Phenylhydroxylamine (1.5
mmol) was dissolved in 1,4-dioxane (10 mL) and was
slowly added over a period of 5–6 h with a syringe
pump. The reaction mixture was then heated for two
additional hours. The metal-catalyst was precipitated
with hexane and filtered. The resulting solution was
concentrated by a rotary evaporator and dried under
vacuum. The crude mixture was purified by column
chromatography (silica gel) using dichloromethane–
petroleum ether (30:70) as the eluent. The compo-
nents of the mixture were analyzed by GC and
GC–MS using naphthalene as the internal standard.
Comparison with authentic samples prepared as
1
1
3. Ho, C.-M.; Lau, T.-C. New J. Chem. 2000, 24, 859.
4. (a) Oppolzer, W.; Snieckus, V. Angew. Chem., Int. Ed. Engl.
1
978, 17, 476; (b) Hoffman, H. M. R. Angew. Chem., Int.
Ed. Engl. 1969, 8, 556; (c) Snider, B. Acc. Chem. Res. 1980,
3, 426.
5. Singh, S.; Nicholas, K. M. Synth. Commun. 2001, 31, 3087.
1
1
9
16. Taylor, E. C.; Tseng, C.-P.; Rampal, J. B. J. Org. Chem.
described in the literature identified the allyl amines.
1982, 47, 552.
In a separate procedure, compounds 8 and 9 were
15
17. (a) Sundberg, R. J.; Brenner, M.; Suter, S. R.; Das, B. P.
Tetrahedron Lett. 1970, 2715; (b) Sundberg, R. J.; Heintzel-
men, R. W. J. Org. Chem. 1974, 39, 2546.
isolated and identified as described in the literature.
18. Campbell, M. M.; Sainsbury, M. Tetrahedron 1985, 23,
Acknowledgements
5637.
1
9. Kamm, O. Org. Synth. 1925, 4, 57.
We thank Professor R. D. Braun of the Department of
Chemistry, UL-Lafayette for helpful discussions.
20. Borche, W. Chem. Ber. 1923, 56, 1494.
21. Miller, A. O.; Furin, G. G. J. Fluorine Chem. 1987, 36, 247.