RSC Advances
Paper
ꢁ
was stirred at 125 C for 24 h under nitrogen. Aer cooled to
room temperature, the precipitate was collected by ltration
and washed with water and ethanol, gave to the dimeric iri-
dium(III) complex [(dpp)2IrCl]2. Aer drying, the crude product
was directly used for next step without further purication.
Cyclometalated [(dpp)2IrCl]2 (1.38 g, 1 mmol), K2CO3 (1.38 g, 10
mmol) and 5 equivalents of diethyl dithiocarbamic acid sodium
salt in dichloromethane (10 mL) was stirred at room tempera-
ture under a nitrogen atmosphere for 3 h. Aer reaction, the
S. Okada, M. Hoshino and K. Ueno, J. Am. Chem. Soc.,
2003, 125, 12971.
7 C. L. Ho, W. Y. Wong, G. J. Zhou, B. Yao, Z. Y. Xie and
L. X. Wang, Adv. Funct. Mater., 2007, 17, 2925.
8 G. P. Ge, J. He, H. Q. Guo, F. Z. Wang and D. C. Zou, J. Org.
Chem., 2009, 694, 3050.
9 Z. Q. Wang, C. Xu, X. M. Dong, Y. P. Zhang, X. Q. Hao,
J. F. Gong, M. P. Song and B. M. Ji, Inorg. Chem. Commun.,
2011, 14, 316.
mixture solution was distilled under vacuum. The crude 10 C. H. Chang, Z. J. Wu, C. H. Chiu, Y. H. Liang, Y. S. Tsai,
product was puried by column chromatography over
aluminum oxide using dichloromethane/petroleum ether as the
eluent to afford the desired iridium(III) complex Ir(dpp)2(dta)
(4.8 mmol, 2.8 g). Yield: 60%. 1H NMR (400 MHz, CDCl3) d:
10.24 (d, J ¼ 0.9 Hz, 2H), 8.27 (dd, J ¼ 8.0, 1.3 Hz, 4H), 8.19 (d, J
¼ 0.8 Hz, 2H), 7.81 (dd, J ¼ 7.8, 0.9 Hz, 2H), 7.64–7.53 (m, 6H),
6.88 (dd, J ¼ 7.6, 1.0 Hz, 2H), 6.82 (dd, J ¼ 7.5, 1.2 Hz, 2H), 6.62–
6.54 (m, 2H), 3.76–3.70 (m, 2H), 3.62–3.46 (m, 2H), 1.25 (d, J ¼
J. L. Liao, Y. Chi, H. Y. Hsieh, T. Y. Kuo, G. H. Lee,
H. A. Pan, P. T. Chou, J. S. Lin and M. R. Tseng, ACS Appl.
Mater. Interfaces, 2013, 5, 7341; J. S. Park, Y. G. Park,
J. Y. Lee, J. W. Kang, J. Liu and S. H. Jin, Org. Electron.,
2013, 14, 2114; F. L. Zhang, W. L. Li, Y. M. Jing, D. X. Ma,
F. Q. Zhang, S. Z. Li, G. G. Cao, G. Guo, B. Wei,
D. P. Zhang, L. Duan, C. Y. Li, Y. F. Feng and B. Zhai, J.
Mater. Chem., 2016, DOI: 10.1039/c6tc01041e.
4.8 Hz, 6H). 13C NMR (CDCl3, 100 MHz) d: 175.17, 162.75, 11 L. S. Cui, Y. Liu, X. Y. Liu, Z. Q. Jiang and L. S. Liao, ACS Appl.
160.44, 159.96, 144.73, 136.23, 132.42, 131.37, 130.92, 129.05,
Mater. Interfaces, 2015, 7, 11007.
127.51, 125.62, 121.19, 109.03, 43.78, 12.40. HRMS (+TOF): m/z 12 D. Q. Gao, F. Scholz, H. G. Nothofer, W. E. Ford, U. Scherf,
¼ 804.1818 (calcd 804 for [C37H32N3S2Ir], [M]+).
J. M. Wessels, A. Yasuda and F. V. Wrochem, J. Am. Chem.
Soc., 2011, 133, 5921–5930; Y. Liu, K. Ye, Y. Fan, W. Song,
Y. Wang and Z. Hou, Chem. Commun., 2009, 25, 3699;
T. Peng, H. Bi, Y. Liu, Y. Fan, H. Gao, Y. Wang and Z. Hou,
J. Mater. Chem., 2009, 19, 8072.
Acknowledgements
The authors acknowledge nancial support from the National
Basic Research Program of China (973 Program, 2012CB933301,
2012CB723402), the Ministry of Education of China (IRT1148),
the National Natural Science Foundation of China (BZ2010043,
20974046, 20774043, 51173081, 50428303, 61106017,
61136003), the Priority Academic Program Development of
Jiangsu Higher Education Institutions (PAPD, YX03001),
Jiangsu National Synergistic Innovation Center for Advanced
Materials (SICAM), the Nature Science Foundation of Jiangsu
Province (BK20131375) and the Research Fund for Nanjing
University of Posts and Telecommunications (NY215153).
13 L. Q. Chen, H. You, C. L. Yang, X. W. Zhang, J. G. Qin and
D. G. Ma, J. Mater. Chem., 2006, 16, 3332; L. Q. Chen,
C. L. Yang, J. G. Qin, J. Gao, H. You and D. G. Ma, J.
Organomet. Chem., 2006, 691, 3519; L. Q. Chen, C. L. Yang,
J. G. Qin, J. Gao and D. G. Ma, Synth. Met., 2005, 152, 225.
14 S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq,
R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau and
M. E. Thompson, Inorg. Chem., 2001, 40, 1704; A. J. Hallett,
B. D. Ward, B. M. Kariuki and S. J. A. Pope, J. Organomet.
Chem., 2010, 695, 2401.
15 I. M. Dixon, J. P. Collin, J. P. Sauvage, L. Flamigni, S. Encinas
and F. Barigelletti, Chem. Soc. Rev., 2000, 29, 385.
16 D. R. Whang, Y. You, S. H. Kim, W. L. Jeong, Y. S. Park,
J. J. Kim and S. Y. Park, Appl. Phys. Lett., 2007, 91, 233501;
L. L. Shi, J. J. Su and Z. J. Wu, Inorg. Chem., 2011, 50, 5477;
L. L. Shi, B. Hong, W. Guan, Z. J. Wu and Z. M. Su, J. Phys.
Chem. A, 2010, 114, 6559; X. N. Li, Z. J. Wu, Z. J. Si,
H. J. Zhang, L. Zhou and X. J. Liu, Inorg. Chem., 2009, 48,
7740; J. H. Jou, Y. X. Lin, S. H. Peng, C. J. Li, Y. M. Yang,
C. L. Chin, J. J. Shyue, S. S. Sun, M. Lee, C. T. Chen,
M. C. Liu, C. C. Chen, G. Y. Chen, J. H. Wu, C. H. Li,
C. F. Sung, M. J. Lee and J. P. Hu, Adv. Funct. Mater., 2014,
24, 555.
Notes and references
1 C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913;
M. A. Baldo, M. E. Thompson and S. R. Forrest, Nature, 1998,
395, 151.
2 M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson
and S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4.
3 B. W. D'Andrade and S. R. Forrest, Adv. Mater., 2004, 16,
1585.
4 C. Fan and C. Yang, Chem. Soc. Rev., 2014, 43, 6439.
5 C. F. Lin, W. S. Huang, H. H. Chou and J. T. Lin, J. Org. Chem.,
2009, 694, 2757.
6 A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide,
J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi,
17 Q. B. Mei, Y. H. Guo, B. H. Tong, J. N. Weng, B. Zhang and
W. Huang, Analyst, 2012, 137, 5398.
64008 | RSC Adv., 2016, 6, 64003–64008
This journal is © The Royal Society of Chemistry 2016