10.1002/chem.201605312
Chemistry - A European Journal
FULL PAPER
optimization developed hMC4R antagonist 39.[32] Its potency and
subtype selectivity are comparable to those of 34, indicating that
the only eight stereoisomers designed in this study could work
as effectively as such larger library.
Filippov, J. H. van Boom, R. Grisshammer, M. Baldus, Proc. Natl. Acad.
Sci. USA 2003, 100, 10706-10711.
[9]
a) P. D. Armstrong, J. G. Cannon, J. P. Long, Nature 1968, 220, 65-66;
b) K. Shimamoto, Y. Ohfune, J. Med. Chem. 1996, 39, 407-423; c) T.
Onishi, C. Mukai, R. Nakagawa, T. Sekiyama, M. Aoki, K. Suzuki, H.
Nakazawa, N. Ono, Y. Ohmura, S. Iwayama, M. Okunishi, T. Tsuji, J.
Med. Chem. 2000, 43, 278-282; d) K. Vervisch, M. D'hooghe, K. W.
Tornroos, N. De Kimpe, Org. Biomol. Chem. 2009, 7, 3271-3279; e) K.
Yoshida, K. Yamaguchi, A. Mizuno, Y. Unno, A. Asai, T. Sone, H.
Yokosawa, A. Matsuda, M. Arisawa, S. Shuto, Org. Biomol. Chem.
2009, 7, 1868-1877; f) H. Zhang, W. Tückmantel, J. B. Eaton, P.-w.
Yuen, L.-F. Yu, K. M. Bajjuri, A. Fedolak, D. Wang, A. Ghavami, B.
Caldarone, N. E. Paterson, D. A. Lowe, D. Brunner, R. J. Lukas, A. P.
Kozikowski, J. Med. Chem. 2012, 55, 717-724; g) M. Boztaş, Y.
Çetinkaya, M. Topal, İ. Gülçin, A. Menzek, E. Şahin, M. Tanc, C. T.
Supuran, J. Med. Chem. 2015, 58, 640-650.
Conclusions
Focusing on the importance of the 3D structural diversity of
molecules in searching for and mimicking a key conformation,
computational calculations and X-ray crystallography confirmed
that the steric and stereoelectronic features of cyclopropane
work effectively to constrain the peptidomimetic molecules into
diverse 3D structures. This 3D structural diversity was depicted
by the PCA, which showed that the cyclopropane-based
peptidomimetics cover the broad chemical space filled by
peptide secondary structures in terms of both main-chain and
side-chain conformations. These detailed conformational
analyses allowed us to obtain the 3D structural information that
[10] a) K. I. Varughese, C. H. Wang, H. Kimura, C. H. Stammer, Int. J. Pept.
Protein Res. 1988, 31, 299-300; b) K. Burgess, K.-K. Ho, B. Pal, J. Am.
Chem. Soc. 1995, 117, 3808-3819; c) P. Wipf, J. Xiao, Org. Lett. 2005,
7, 103-106; d) J. E. DeLorbe, J. H. Clements, M. G. Teresk, A. P.
Benfield, H. R. Plake, L. E. Millspaugh, S. F. Martin, J. Am. Chem. Soc.
2009, 131, 16758-16770; e) S. S. Bhella, M. Elango, M. P. S. Ishar,
Tetrahedron 2009, 65, 240-246; f) L. Sernissi, M. Petrović, D. Scarpi, A.
Guarna, A. Trabocchi, F. Bianchini, E. G. Occhiato, Chem. Eur. J. 2014,
20, 11187-11203.
is important for rational ligand optimization. As
a result,
down/trans-folded mimetic 4 was selected, leading to more
potent and subtype-selective MCR ligand 34. The process
described in this study was carried out without knowing the 3D
structural information of the target and its peptide ligands.
Therefore, this peptidomimetic strategy can be applied even
when the ligand-target interaction is poorly documented, as is
often the case in the early stage of drug development.
[11] a) Y. Kazuta, H. Abe, T. Yamamoto, A. Matsuda, S. Shuto, J. Org.
Chem. 2003, 68, 3511-3521; b) A. J. Cruz-Cabeza, F. H. Allen, Acta
Crystallogr. Sect. B: Struct. Sci. 2011, 67, 94-102.
[12] a) S. Shuto, S. Ono, Y. Hase, N. Kamiyama, H. Takada, K. Yamashita,
A. Matsuda, J. Org. Chem. 1996, 61, 915-923; b) M. Watanabe, T.
Hirokawa, T. Kobayashi, A. Yoshida, Y. Ito, S. Yamada, N. Orimoto, Y.
Yamasaki, M. Arisawa, S. Shuto, J. Med. Chem. 2010, 53, 3585-3593.
[13] A. Mizuno, S. Miura, M. Watanabe, Y. Ito, S. Yamada, T. Odagami, Y.
Kogami, M. Arisawa, S. Shuto, Org. Lett. 2013, 15, 1686-1689.
Acknowledgements
[14] Methods for defining peptidomimetic structure have been reported. For
example, a) using distance between Cα atoms, U. Rosenström, C.
Sköld, B. Plouffe, H. Beaudry, G. Lindeberg, M. Botros, F. Nyberg, G.
Wolf, A. Karlén, N. Gallo-Payet, A. Hallberg, J. Med. Chem. 2005, 48,
4009-4024; b) using distance between Cβ atoms, E. Ko, J. Liu, K.
Burgess, Chem. Soc. Rev. 2011, 40, 4411-4421; c) using Cα-Cβ bond
vector, S. L. Garland, P. M. Dean, J. Comput. Aided Mol. Des. 1999, 13,
485-498; d) using dihedral angle, P. Gillespie, J. Cicariello, G. L. Olson,
Biopolymers 1997, 43, 191-217. For recent review of the classification
of peptidomimetics, e) M. Pelay-Gimeno, A. Glas, O. Koch, T. N.
Grossmann, Angew. Chem. Int. Ed. 2015, 54, 8896-8927.
We are grateful to Prof. Dr. A. Carotenuto (University of Naples)
for providing the calculated structural data of MT-II and also to
Sanyo Fine Co., Ltd. for the gift of the chiral epichlorohydrins.
This investigation was supported by Grant-in-Aids for Scientific
Research (21390028 to S.S. and 2310550201, 2179000300 to
M.A.) from the Japan Society for the Promotion of Science.
Keywords: Peptidomimetics • Drug design • Three-dimensional
structural diversity • Chemical space • Conformation analysis
[15] For the synthesis of compounds A'-D', see Supporting Information. The
supplementary crystallographic data in CIF format can be obtained from
The
Cambridge
Crystallographic
Data
Centre
via
[1]
[2]
[3]
I. Avan, C. D. Hall, A. R. Katritzky, Chem. Soc. Rev. 2014, 43, 3575-
3594.
numbers: CCDC 865592, CCDC 865593, CCDC 865594 and CCDC
865595.
R. M. J. Liskamp, D. T. S. Rijkers, J. A. W. Kruijtzer, J. Kemmink,
ChemBioChem 2011, 12, 1626-1653.
[16] a) C. M. Dobson, Nature 2004, 432, 824-828; b) T. Kameda, S. Takada,
Proc. Natl. Acad. Sci. USA 2006, 103, 17765-17770; c) J.-L. Reymond,
M. Awale, ACS Chem. Neurosci. 2012, 3, 649-657.
a) D. Chatenet, B. Folch, D. Feytens, M. Létourneau, D. Tourwé, N.
Doucet, A. Fournier, J. Med. Chem. 2013, 56, 9612-9622; b) L. Karhu,
A. Turku, H. Xhaard, BMC Struct. Biol. 2015, 15, 9.
[17] P. Vanhee, J. Reumers, F. Stricher, L. Baeten, L. Serrano, J.
Schymkowitz, F. Rousseau, Nucleic Acids Res. 2010, 38, D545-D551.
[18] E. M. Haslach, J. W. Schaub, C. Haskell-Luevano, Bioorg. Med. Chem.
2009, 17, 952-958.
[4]
[5]
[6]
L. R. Whitby, Y. Ando, V. Setola, P. K. Vogt, B. L. Roth, D. L. Boger, J.
Am. Chem. Soc. 2011, 133, 10184-10194.
G. Ruiz-Gómez, J. D. A. Tyndall, B. Pfeiffer, G. Abbenante, D. P. Fairlie,
Chem. Rev. 2010, 110, PR1-PR41.
[19] M. T. Robak, M. A. Herbage, J. A. Ellman, Chem. Rev. 2010, 110,
3600-3740.
R. Haubner, D. Finsinger, H. Kessler, Angew. Chem. Int. Ed. Engl.
1997, 36, 1374-1389.
[20] a) L. N. Koikov, F. H. Ebetino, M. G. Solinsky, D. Cross-Doersen, J. J.
Knittel, Bioorg. Med. Chem. Lett. 2003, 13, 2647-2650; b) J. R. Holder,
F. F. Marques, Z. Xiang, R. M. Bauzo, C. Haskell-Luevano, Eur. J.
Pharmacol. 2003, 462, 41-52; c) L. N. Koikov, F. H. Ebetino, M. G.
[7]
[8]
K. C. Chou, Anal. Biochem. 2000, 286, 1-16.
a) M. A. Ceruso, D. F. McComsey, G. C. Leo, P. Andrade-Gordon, M. F.
Addo, R. M. Scarborough, D. Oksenberg, B. E. Maryanoff, Bioorg. Med.
Chem. 1999, 7, 2353-2371; b) S. Luca, J. F. White, A. K. Sohal, D. V.
This article is protected by copyright. All rights reserved.