Dalton Transactions
Communication
ppm dramatically shifted upfield toward δ 6.88 (Ha), 6.52 (Hb)
Warfare, ed. R. F. Sidell, E. T. Takafuji and D. R. Franz,
TMM, Washington, DC, 1997, pp. 271–286.
5 G. C. Miller and C. A. Pritsos, Cyanide: Soc., Ind.: Econ.
Aspects, Proc. Symp. Annu. Meet. TMS 2001, 73–81.
6 Guidelines for Drinking-Water Quality, World Health Organ-
ization, Geneva, 1996.
−
and 6.51 (Hc) ppm respectively upon CN addition, indicating
that the CN− functions as a nucleophile. In C-NMR spectra
of CHD and a CHD cyanide adduct, we found that there is a
new peak of cyanide at 116.62 and the peak at 180.28 (indole-
13
2
3
nine sp C) is shifted to 70.35 (becomes sp C), confirming the
formation of the cyano adduct. In high resolution ESI TOF MS
spectra, there is a peak at m/z 727.46 corresponding to a CHD–
CN adduct, which confirmed the formation of a binuclear
adduct of cyanide with CHD, m/z 675.45. In FT-IR spectra,
7 H. Miyaji and J. L. Sessler, Angew. Chem., Int. Ed., 2001, 40,
154–157; S. J. Hong, J. Yoo, S. H. Kim, J. S. Kim, J. Yoon
and C. H. Lee, Chem. Commun., 2009, 189–191; K. Parab,
K. Venkatasubbaiah and F. J€akle, J. Am. Chem. Soc., 2006,
128, 12879–12885; F. Garcia, J. M. Garcia, B. G. Acosta,
R. M. Manez, F. Sancenon and J. Soto, Chem. Commun.,
2005, 2790–2792; J. V. R. Lis, R. M. Manez and J. Soto,
Chem. Commun., 2002, 2248–2249; J. V. R. Lis, R. M. Manez
and J. Soto, Chem. Commun., 2005, 5260–5262.
8 P. Fuertes, D. Moreno, J. V. Cuevas, M. García-Valverde and
T. Torroba, Chem.–Asian J., 2010, 5, 1692–1699; D. G. Cho
and J. L. Sessler, Chem. Soc. Rev., 2009, 38, 1647–1662;
C. L. Chen, Y. H. Chen, C. Y. Chen and S. S. Sun, Org. Lett.,
2006, 8, 5053–5056; S. Vallejos, P. Estevez, F. C. Garcia,
F. Serna, J. L. de la Pena and J. M. Garcia, Chem. Commun.,
2010, 46, 7951–7953; H.B. Yu, Q. Zhan, Z. X. Jiang, J. G. Qin
and Z. Li, Sens. Actuators, B, 2010, 148, 110–116; X. D. Lou,
Y. Zhang, J. G. Qin and Z. Li, Chem.–Eur. J., 2011, 17, 9691–
9696; Z. Ekmekci, M. D. Yilmaz and E. U. Akkaka, Org.
Lett., 2008, 10, 461–464; Y. Shiraishi, S. Sumiya and
T. Hirai, Chem. Commun., 2011, 47, 4953–4955; M. E. Jun,
B. Roy and K. H. Ahn, Chem. Commun., 2011, 47, 7583–
−
1
there is a new peak at 2250 cm , concluding the presence of
cyanide in the CHD–CN adduct. All of these results are consist-
ent with our proposed mechanism (ESI†).
In conclusion, we have successfully devised a novel NIR
probe (CHD) towards cyanide in aqueous acetonitrile solution.
CHD exhibits a unique colorimetric and fluorescence enhance-
ment only with cyanide ions even in the presence of excess
amounts of other anions, demonstrating its excellent selecti-
vity compared to other anions. The detection limit of CHD was
estimated to be 0.54 μM. The sensitivity is lower than the
maximum permissive level in drinking water according to the
World Health Organization (WHO). The significant changes in
color can be observed with the naked eye.
The authors thank the DST and CSIR (Govt. of India) for
financial support. S.P. and A.M. acknowledge the UGC and
CSIR respectively for providing fellowships.
7601; J. Wang and C. S. Ha, Analyst, 2011, 136, 1627–1631;
S. Y. Gown, E. M. Lee and S. H. Kim, Spectrochim. Acta, Part
A, 2012, 46, 77–81; X. Lv, J. Liu, Y. Liu, Y. Zhao, Y. Q. Sun,
P. Wang and W. Guo, Chem. Commun., 2011, 47, 12843–
12845; Z. Yang, Z. Liu, Y. Chen, X. Wang, W. He and Y. Lu,
Org. Biomol. Chem., 2012, 10, 5073; J. F. Xu, H. H. Chen,
Z. J. Li, L. Z. Wu, C. H. Tung and Q. Z. Wang, Sens. Actua-
tors, B, 2012, 168, 14–19; J. Ren, W. Zhu and H. Tian,
Talanta, 2008, 75, 700–760; H. J. Kim, K. C. Ko, J. H. Lee,
J. Y. Lee and J. S. Kim, Chem. Commun., 2011, 47, 2886–2888.
9 X. Chen, S. W. Nam, G. H. Kim, N. Song, Y. Jeong, I. Shin,
S. K. Kim, J. Kim, S. Park and J. Yoon, Chem. Commun.,
2010, 46, 8953–8955.
Notes and references
1
P. D. Beer and P. A. Gale, Angew. Chem., Int. Ed., 2001, 40,
86–516; V. Amendola, D. Esteban-Gómez, L. Fabbrizzi and
4
M. Licchelli, Acc. Chem. Res., 2006, 39, 343–353;
S. Goswami, S. Paul and A. Manna, RSC Adv, 2013, DOI:
1
0.1039/C3RA40984H; S. Goswami, S. Paul and A. Manna,
Dalton Trans., DOI: 10.1039/C3DT51238J; S. Goswami,
A. Manna, S. Paul, K. Aich, A. K. Das and S. Chakroborty,
Dalton Trans., 2013, 42, 8078.
2
S. I. Baskin and T. G. Brewer, in Medical Aspects of Chemical
and Biological Warfare, ed. F. Sidell, E. T. Takafuji and
D. R. Franz, TMM Publications, Washington, DC, 1997, ch. 10 X. Zhang, C. Li, X. Cheng, X. Wang and B. Zhang, Sens.
0, p. 271; K. W. Kulig, Cyanide Toxicity, U.S. Department Actuators, B, 2008, 129, 152.
of Health and Human Services, Atlanta, GA, 1991; J. Yoon, 11 N. Narayanan and G. Patonay, J. Org. Chem., 1995, 60, 2391–
1
S. K. Kim, N. J. Singh and K. S. Kim, Chem. Soc. Rev.,
006, 35, 355; T. Gunnlaugsson, M. Glynn, G. M. Tocci,
2395; J. H. Flanagan Jr., S. H. Khan, S. Menchen, S. A. Soper
and R. P. Hammer, Bioconjugate Chem., 1997, 8, 751–758.
2
P. E. Kruger and F. M. Pfeffer, Coord. Chem. Rev., 2006, 250, 12 R. M. Manez and F. Sancenon, Chem. Rev., 2003, 103, 4419–
3
094; P. A. Gale, Acc. Chem. Res., 2006, 39, 465; S. K. Kim,
D. H. Lee, J. I. Hong and J. Yoon, Acc. Chem. Res., 2009, 42,
3; H. N. Lee, Z. Xu, S. Kim, M. K. Swamy, Y. Kim, S.-J. Kim
4476; S. J. Brooks, P. A. Gale and M. E. Light, Chem.
Commun., 2005, 4696–4698; S. J. Brooks, P. R. Edwards,
P. A. Gale and M. E. Light, New J. Chem., 2006, 30, 65–70;
C. Y. Wu, M. S. Chen, C. A. Lin, S. C. Lin and S. S. Sun,
Chem.–Eur. J., 2006, 12, 2263–2269.
2
and J. Yoon, J. Am. Chem. Soc., 2007, 129, 3828.
M. A. Holland and L. M. Kozlowski, Clin. Pharm., 1986, 5,
3
4
7
37.
13 A. Ajayaghosh, P. Carol and S. Sreejith, J. Am. Chem. Soc.,
2005, 127, 14962–14963.
K. W. Kulig, Cyanide Toxicity, U.S. Department of Health
and Human Services, Atlanta, GA, 1991; S. L. Baskin and 14 H. Li, Z. Wen, L. Jin, Y. Kam and B. Yin, Chem. Commun.,
T. G. Brewer, in Medical Aspects of Chemical and Biological
2012, 48, 11659; J. Zhang, S. Zhu, L. Valenzano, F.-T. Luo
This journal is © The Royal Society of Chemistry 2013
Dalton Trans., 2013, 42, 10682–10686 | 10685