Chemistry - A European Journal
10.1002/chem.201700045
FULL PAPER
[
5] a) D. E. Brash, Photochem. Photobiol. 2015, 91, 15-26; b) E. D. Pleasance,
Single-point excited-state calculations were performed with the
multireference multiconfigurational second-order perturbation theory
R. K. Cheetham, P. J. Stephens, D. J. McBride, S. J. Humphray, C. D.
Greenman, I. Varela, M.-L. Lin, G. R. Ordonez, G. R. Bignell, K. Ye, J. Alipaz,
M. J. Bauer, D. Beare, A. Butler, R. J. Carter, L. Chen, A. J. Cox, S. Edkins, P.
I. Kokko-Gonzales, N. A. Gormley, R. J. Grocock, C. D. Haudenschild, M. M.
Hims, T. James, M. Jia, Z. Kingsbury, C. Leroy, J. Marshall, A. Menzies, L. J.
Mudie, Z. Ning, T. Royce, O. B. Schulz-Trieglaff, A. Spiridou, L. A. Stebbings,
L. Szajkowski, J. Teague, D. Williamson, L. Chin, M. T. Ross, P. J. Campbell,
D. R. Bentley, P. A. Futreal and M. R. Stratton, Nature 2010, 463, 191-196.
[6] a) H. E. Johns, M. Delbruck and S. A. Rapaport, J. Mol. Biol. 1962, 4, 104-
114; b) A. J. Varghese and S. Y. Wang, Science 1967, 156, 955-957; c) J. E.
Donnellan, Jr. and R. B. Setlow, Science 1965, 149, 308-310.
with the zeroth-order CASSCF wave function.
The XMCQDPT2 calculations were combined with the equilibrium
dielectric polarizable continuum model (DPCM) of water. The CASSCF
active space was composed from the frontier molecular orbitals (MOs)
localized on xylene and thymine rings (Supporting Information Figures S8
and S9). CASSCF energy averaging over all included states (singlet
states or both singlet and triplet states) with equal weights was
performed. The XMCQDPT2 calculations were carried out with intruder-
state avoidance energy shift (edshft) of 0.02 hartree. Optimization of the
conical intersections geometries was carried out with the SA2-
CASSCF(12,12) method (12 electrons in 12 MOs with energy-averaging
[
7] A. Banyasz, T. Douki, R. Improta, T. Gustavsson, D. Onidas, I. Vaya, M.
Perron and D. Markovitsi, J. Am. Chem. Soc. 2012, 134, 14834-14845.
[8] W. J. Schreier, P. Gilch and W. Zinth, Annu. Rev. Phys. Chem. 2015, 66,
497-519.
[9] a) A. Banyasz, I. Vaya, P. Changenet-Barret, T. Gustavsson, T. Douki and
D. Markovitsi, J. Am. Chem. Soc. 2011, 133, 5163-5165; b) S. Mouret, C.
Baudouin, M. Charveron, A. Favier, J. Cadet and T. Douki, Proc. Natl. Acad.
Sci. 2006, 103, 13765-13770.
[10] S. Premi, S. Wallisch, C. M. Mano, A. B. Weiner, A. Bacchiocchi, K.
Wakamatsu, E. J. Bechara, R. Halaban, T. Douki and D. E. Brash, Science
2
The Mulliken atomic charges derived from the zeroth-
order QDPT electron densities were used to determine the net charges
on the bases. In the XpT and TpT dinucleotides, electronic coupling and
maximum ET rate constants were evaluated using the generalized
Mulliken-Hush method and semi-classical Marcus theory.
015, 347, 842-847.
[11] a) D. M. Ames, G. Lin, Y. Jian, J. Cadet and L. Li, J. Org. Chem. 2014, 79,
Thymine and xylene methylated at position N1/C1 were used in
calculations of the redox energies. Geometry optimization and energy
calculations were performed with the (U)B3LYP-D3-PCM method.
Electron affinities and ionization potentials were computed as adiabatic
energy differences between the radical ion and neutral closed-shell (CS)
or triplet species. A positive electron affinity corresponds to the radical
anion being lower in energy than the neutral CS or triplet species. A
positive ionization potential corresponds to the radical cation being higher
in energy than the neutral CS or triplet species.
4843-4851; b) G. Lin and L. Li, Angew. Chem. Int. Ed. 2010, 49, 9926-9929; c)
E. C. Hayes, Y. Jian, L. Li and S. Stoll, J. Phys. Chem. B 2016, 120, 10923-
10931; d) Y. Jian, D. M. Ames, H. Ouyang and L. Li, Org. Lett. 2015, 17, 824-
827.
[
12] A. Moysan, A. Viari, P. Vigny, L. Voituriez, J. Cadet, E. Moustacchi and E.
Sage, Biochemistry 1991, 30, 7080-7088.
13] Q. Du, H. Zhao, D. Song, K. Liu and H. Su, J. Phys. Chem. B 2012, 116,
1117-11123.
14] A. Giussani, L. Serrano-Andrés, M. Merchán, D. Roca-Sanjuán and M.
[
1
[
Garavelli, J. Phys. Chem. B 2013, 117, 1999-2004.
[15] a) R. Improta, J. Phys. Chem. B 2012, 116, 14261-14274; b) L. Esposito,
A. Banyasz, T. Douki, M. Perron, D. Markovitsi and R. Improta, J. Am. Chem.
Soc. 2014, 136, 10838-10841; c) A. Banyasz, L. Esposito, T. Douki, M. Perron,
C. Lepori, R. Improta and D. Markovitsi, J. Phys. Chem. B 2016, 120, 4232-
4242; d) D. Markovitsi, Photochem. Photobiol. 2016, 92, 45-51.
The standard 6-31G** basis set was used throughout. All calculations
were performed with Firefly 8.1 software
which is partially based on
[
16] a) W. J. Schreier, T. E. Schrader, F. O. Koller, P. Gilch, C. E. Crespo-
Hernandez, V. N. Swaminathan, T. Carell, W. Zinth and B. Kohler, Science
007, 315, 625-629; b) T. Ostrowski, J.-C. Maurizot, M.-T. Adeline, J.-L.
2
Fourrey and P. Clivio, J. Org. Chem. 2003, 68, 6502-6510; c) C. Moriou, M.
Thomas, M.-T. Adeline, M.-T. Martin, A. Chiaroni, S. Pochet, J.-L. Fourrey, A.
Favre and P. Clivio, J. Org. Chem. 2007, 72, 43-50.
Acknowledgements
[17] a) B. A. Schweitzer and E. T. Kool, J. Am. Chem. Soc. 1995, 117, 1863-
1
2
872; b) K. M. Guckian and E. T. Kool, Angew. Chem. Int. Ed. 1997, 36, 2825-
828; c) E. T. Kool and H. O. Sintim, Chem. Commun. 2006, 3665-3675.
The authors thank the National Science Foundation (CHE
454184 to L.L) and the Minerva Program of the Max-Planck
1
[18] a) S. Moran, R. X.-F. Ren and E. T. Kool, Proc. Natl. Acad. Sci. 1997, 94,
10506-10511; b) S. Moran, R. X. F. Ren, S. Rumney and E. T. Kool, J. Am.
Society (to T.D.) for financial support. The NMR and MS facilities
at IUPUI are supported by National Science Foundation MRI
grants CHE-0619254 and DBI-0821661, respectively. T.D. and
E.M. are very grateful to Chris Roome (MPImF Heidelberg) for
excellent support of high performance computing.
Chem. Soc. 1997, 119, 2056-2057; c) E. T. Kool, Annu. Rev. Biochem. 2002,
71, 191-219.
[19] a) K. M. Guckian, T. R. Krugh and E. T. Kool, Nat. Struct. Biol. 1998, 5,
954-959; b) K. M. Guckian, T. R. Krugh and E. T. Kool, J. Am. Chem. Soc.
2000, 122, 6841-6847.
[
[
[
20] P. S. Pallan and M. Egli, J. Am. Chem. Soc. 2009, 131, 12548-12549.
21] P. R. Callis, Annu. Rev. Phys. Chem. 1983, 34, 329-357.
22] a) D. Liu and L. Li, RSC Adv. 2013, 3, 19545-19550; b) D. Liu, Y. Zhou, J.
Pu and L. Li, Chem. Eur. J. 2012, 18, 7823-7833.
Keywords: thymine dimer • DNA photochemistry • electron
transfer • pyrimidine (6-4) pyrimidone photoproduct • spore
photoproduct
[23] See supporting information.
[24] S. Iwai, M. Shimizu, H. Kamiya and E. Ohtsuka, J. Am. Chem. Soc. 1996,
118, 7642-7643.
[
[
25] G. Lin, Y. Jian, H. Ouyang and L. Li, Org. Lett. 2014, 16, 5076-5079.
26] a) J.-S. Taylor, D. S. Garrett and M. J. Wang, Biopolymers 1988, 27,
[1] a) J. Cadet and P. Vigny in Photochemistry and the nucleic acids, Vol. 1
1571-1593; b) L. S. Kan, L. Voituriez and J. Cadet, Biochemistry 1988, 27,
5796-5803.
(Ed. H. Morrison), Wiley, New York, 1990, pp. 1-272; b) J. Cadet, E. Sage and
T. Douki, Mutat. Res-Fund. Mol. M. 2005, 571, 3-17; c) J. Cadet, A. Grand and
T. Douki in Solar UV radiation-induced DNA bipyrimidine photoproducts:
formation and mechanistic insights, Vol. 356 Eds.: M. Barbatti, A. C. Borin and
S. Ullrich), Springer International Publishing, 2015, pp. 249-275; d) J. Cadet, S.
Mouret, J. L. Ravanat and T. Douki, Photochem. Photobiol. 2012, 88, 1048-
[27] C.-P. Hsu, Acc. Chem. Res. 2009, 42, 509-518.
[28] R. A. Marcus and N. Sutin, BBA Rev. Bioenergetics 1985, 811, 265-322.
[29] a) Z. b. Yang, R. b. Zhang and L. A. Eriksson, Phys. Chem. Chem. Phys.
2011, 13, 8961-8966; b) Z. b. Yang, L. A. Eriksson and R. b. Zhang, J. Phys.
Chem. B 2011, 115, 9681-9686.
[30] L. Blancafort and A. Migani, J. Am. Chem. Soc. 2007, 129, 14540-14541.
[31] V. Labet, N. Jorge, C. Morell, T. Douki, A. Grand, J. Cadet and L. A.
Eriksson, Photochem. Photobiol. Sci. 2013, 12, 1509-1516.
[32] P. Clivio, J. L. Fourrey, J. Gasche and A. Favre, J. Am. Chem. Soc. 1991,
113, 5481-5483.
[33] a) Y. Zhang, K. de La Harpe, A. A. Beckstead, L. Martínez-Fernández, R.
Improta and B. Kohler, J. Phys. Chem. Lett. 2016, 7, 950-954; b) Y. Zhang, J.
Dood, A. A. Beckstead, X.-B. Li, K. V. Nguyen, C. J. Burrows, R. Improta and
B. Kohler, Proc. Natl. Acad. Sci. 2014, 111, 11612-11617; c) D. B. Bucher, B.
1065; e) J. Cadet, S. Courdavault, J. L. Ravanat and T. Douki, Pure Appl.
Chem. 2005, 77, 947-961.
[2] R. E. Rycyna and J. L. Alderfer, Nucleic Acids Res. 1985, 13, 5949-5963.
[3] J. S. Taylor and M. P. Cohrs, J. Am. Chem. Soc. 1987, 109, 2834-2835.
[4] a) C. l. Desnous, D. Guillaume and P. Clivio, Chem. Rev. 2010, 110, 1213-
1
232; b) P. Setlow, Trends Microbiol. 2007, 15, 172-180; c) P. Setlow, J. Appl.
Microbiol. 2006, 101, 514-525; d) P. Setlow and L. Li, Photochem. Photobiol.
015, 91, 1263-1290.
2
This article is protected by copyright. All rights reserved.