organic compounds
Much effort continues to be expended in attempts to
compute, using a variety of ab initio, semi-empirical and
heuristic methods, the structures of simple molecular
compounds (Lommerse et al., 2000; Motherwell, 2001).
However, the unexpected differences between the crystal
structures of members of simple series of isomeric compounds,
such as compounds (I)±(IV), and other series where hard
Compound (IV) crystallized in the monoclinic system; space group
1
/c was uniquely assigned from the systematic absences. H atoms
P2
were treated as riding atoms, with CÐH distances of 0.93 A.
Ê
Data collection: SMART (Bruker, 1998); cell re®nement: SAINT
Bruker, 2000); data reduction: SAINT; program(s) used to solve
(
structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne
structure: SHELXL97 (Sheldrick, 1997); molecular graphics:
PLATON (Spek, 2002); software used to prepare material for
publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).
(
Braga et al., 1995) hydrogen bonds are absent, as reported
elsewhere (Farrell et al., 2002; Glidewell et al., 2002), together
with the entire phenomenon of polymorphism, in particular
the rather frequent observation of concomitant polymorphism
JNL thanks NCR Self-Service, Dundee, for grants which
have provided computing facilities for this work. JLW thanks
CNPq and FAPERJ for ®nancial support.
(
Bernstein et al., 1999), raise at least the suspicion that, for
systems characterized by weak and/or long-range inter-
molecular forces, the crystal structures may, in general, be
intrinsically non-computable.
Experimental
Supplementary data for this paper are available from the IUCr electronic
archives (Reference: GG1120). Services for accessing these data are
described at the back of the journal.
A sample of the title compound was obtained by reaction of equi-
molar quantities of 2-nitrobenzenesulfenyl chloride and (4-nitro-
benzenethiolato)triphenylstannane in chloroform solution. Crystals
of (IV) suitable for single-crystal X-ray diffraction were grown by
slow evaporation of a solution in ethanol [m.p. 429±431 K; literature
m.p. 429 K (Lukashevich & Sergeeva, 1949)].
References
Crystal data
Aupers, J. H., Cox, P. J., Doidge-Harrison, S. M. S. V., Howie, R. A., Low, J. N.
& Wardell, J. L. (1999). Main Group Chem. 3, 23±42.
Bernstein, J., Davey, R. J. & Henck, J.-O. (1999). Angew. Chem. Int. Ed. 38,
�
3
C
12 8
H N
O S
2 4 2
D
x
= 1.579 Mg m
r
M = 308.34
Mo Kꢂ radiation
Cell parameters from 4661
re¯ections
3440±3461.
Monoclinic, P2 =c
1
Ê
a = 11.4923 (6) A
Boese, R., Bl aÈ ser, D., Nussbaumer, M. & Krygowski, T. M. (1992). Struct.
Chem. 3, 363±368.
Boonstra, E. G. (1963). Acta Cryst. 16, 816±823.
Braga, D., Grepioni, F., Biradha, K., Pedireddi, V. R. & Desiraju, G. R. (1995).
J. Am. Chem. Soc. 117, 3156±3166.
Ê
b = 7.9061 (4) A
ꢀ
ꢃ = 2.9±32.5
ꢄ = 0.43 mm
T = 298 (2) K
Ê
ꢀ
� 1
c = 14.3117 (7) A
ꢁ
= 94.3350 (10)
Ê
3
V = 1296.63 (11) A
Z = 4
Block, colourless
0.33 Â 0.20 Â 0.12 mm
Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin,
USA.
Data collection
Bruker (2000). SADABS (Version 2.03) and SAINT (Version 6.02a). Bruker
AXS Inc., Madison, Wisconsin, USA.
Cannon, D., Glidewell, C., Low, J. N. & Wardell, J. L. (2000). Acta Cryst. C56,
Nonius KappaCCD area-detector
diffractometer
4661 independent re¯ections
2924 re¯ections with I > 2ꢅ(I)
1267±1268.
'
and ! scans
Absorption correction: multi-scan
SADABS; Bruker, 2000)
min = 0.873, Tmax = 0.951
3 378 measured re¯ections
Rint = 0.027
Choi, C. S. & Abel, J. E. (1972). Acta Cryst. B28, 193±201.
Domenicano, A. & Murray-Rust, P. (1979). Tetrahedron Lett. pp. 2283±2286.
Farrell, D. M. M., Glidewell, C., Low, J. N., Skakle, J. M. S. & Zakaria, C. M.
ꢀ
ꢃ
max = 32.5
(
T
h = � 17 ! 15
k = � 11 ! 11
l = � 21 ! 19
(
2002). Acta Cryst. B58, 289±299.
1
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. &
Wardell, J. L. (2002). Acta Cryst. B58. In the press.
Glidewell, C., Low, J. N. & Wardell, J. L. (2000). Acta Cryst. B56, 893±905.
Herbstein, F. H. & Kapon, M. (1990). Acta Cryst. B46, 567±572.
Kucsman, A., Kapovits, I., Parkanyi, L., Argay, G. & Kalman, A. (1984). J.
Mol. Struct. 125, 331±347.
Lommerse, J. P. M., Motherwell, W. D. S., Ammon, H. L., Dunitz, J. D.,
Gavezzotti, A., Hofmann, D. W. M., Leusen, F. J. J., Mooij, W. T. M., Price,
S. L., Schweizer, B., Schmidt, M. U., van Eijck, B. P., Verwer, P. & Williams,
D. E. (2000). Acta Cryst. B56, 697±714.
Re®nement
2
Re®nement on F
2
H-atom parameters constrained
2
2
2
2
R[F > 2ꢅ(F )] = 0.039
wR(F ) = 0.105
S = 0.93
w = 1/[ꢅ (F
where P = (F
(Á/ꢅ)max < 0.001
o
) + (0.056P) ]
2
2 2
o c
+ 2F )/3
Ê
� 3
4
1
661 re¯ections
81 parameters
Áꢆmax = 0.28 e A
Áꢆmin = � 0.21 e AÊ
� 3
Table 1
Selected bond and torsion angles ( ).
Low, J. N., Storey, E. J., McCarron, M., Wardell, J. L., Ferguson, G. &
Glidewell, C. (2000). Acta Cryst. B56, 58±67.
ꢀ
Lukashevich, V. O. & Sergeeva, M. M. (1949). Zh. Obshch. Khim. 19, 1493±
1506.
Motherwell, W. D. S. (2001). Mol. Cryst. Liq. Cryst. 356, 559±567.
Sekine, A., Ohashi, Y., Yoshimura, K., Yagi, M. & Higuchi, J. (1994). Acta
Cryst. C50, 1101±1104.
C12ÐC11ÐC16
C12ÐC11ÐS1
C16ÐC11ÐS1
C11ÐC12ÐC13
C11ÐC12ÐN12
C22ÐC21ÐC26
116.33 (12)
121.77 (10)
121.88 (10)
122.12 (12)
120.57 (12)
119.95 (13)
C22ÐC21ÐS2
C26ÐC21ÐS2
C23ÐC24ÐC25
C23ÐC24ÐN24
C25ÐC24ÐN24
116.93 (10)
123.12 (11)
122.02 (13)
118.99 (13)
118.99 (12)
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
G oÈ ttingen, Germany.
Spek, A. L. (2002). PLATON. Version of April 2002. University of Utrecht,
The Netherlands.
Trotter, J. & Williston, C. S. (1966). Acta Cryst. 21, 285±288.
Wardell, J. L., Low, J. N. & Glidewell, C. (2000). Acta Cryst. C56, 679±681.
S1ÐS2ÐC21ÐC22
S2ÐS1ÐC11ÐC12
C11ÐS1ÐS2ÐC21
� 150.29 (11)
� 175.34 (10)
� 90.27 (7)
C11ÐC12ÐN12ÐO121 � 0.4 (2)
C23ÐC24ÐN24ÐO241 6.6 (2)
ꢁ
o486 Christopher Glidewell et al.
12 8 2
C H N O
S
4 2
Acta Cryst. (2002). C58, o485±o486