Communication
ChemComm
D. O’Hogain and D. Parker, Chem. – Eur. J., 2017, 23, 7976–7989;
(e) A. I. Gaudette, A. E. Thorarinsdottir and T. D. Harris, Chem.
Commun., 2017, 53, 12962–12965; ( f ) A. E. Thorarinsdottir, K. Du,
J. H. P. Collins and T. D. Harris, J. Am. Chem. Soc., 2017, 139,
15836–15847; (g) A. E. Thorarinsdottir, S. M. Tatro and T. D. Harris,
Inorg. Chem., 2018, 57, 11252–11263.
6 (a) S. J. Ratnakar, S. Viswanathan, Z. Kovacs, A. K. Jindal, K. N. Green and
A. D. Sherry, J. Am. Chem. Soc., 2012, 134, 5798–5800; (b) G. S. Loving,
S. Mukherjee and P. Caravan, J. Am. Chem. Soc., 2013, 135, 4620–4623;
(c) P. B. Tsitovich, J. A. Spernyak and J. R. Morrow, Angew. Chem., Int. Ed.,
2013, 52, 13997–14000; (d) K. Du, E. A. Waters and T. D. Harris, Chem.
Sci., 2017, 8, 4424–4430.
CEST peak frequencies in the physiological pH range can be
prevented for this family of probes by decreasing the pKa of the
ionization process below 4.0. This is highly advantageous for
intensity-based PARACEST probes and was accomplished for 3
through incorporation of a protonated amine group.
Finally, the high solution stability of 3 was confirmed by
cyclic voltammetry and ligand substitution studies. The absence of
an oxidation process within the potential window of the solvent
indicates that 3 is inert toward reaction with O2 in aqueous
solutions (see Fig. S19, ESI†).22 Moreover, 3 remains intact in
the presence of physiological phosphates, demonstrating its
high kinetic inertness (see Fig. S20, ESI†).
7 (a) R. A. Moats, S. E. Fraser and T. J. Meade, Angew. Chem., Int. Ed.,
1997, 36, 726–728; (b) S. Mizukami, R. Takikawa, F. Sugihara,
¨
Y. Hori, H. Tochio, M. Walchli, M. Shirakawa and K. Kikuchi,
J. Am. Chem. Soc., 2008, 130, 794–795; (c) T. Chauvin, P. Durand,
M. Bernier, H. Meudal, B.-T. Doan, F. Noury, B. Badet, J.-C. Beloeil
The foregoing results demonstrate the utility of a new
amine-functionalized dicobalt PARACEST probe for the ratio-
metric quantitation of pH, and highlight the excellent tunability of
the dinucleating ligand platform to enhance pH sensitivity and
CEST signal intensities. Efforts are underway to investigate the
stability and performance of this probe in physiological environ-
ments. Toward this end, preliminary NMR and CEST experiments
for 3 in fetal bovine serum (FBS) and 17% (w/v) gelatin gels revealed
similar pH-dependent trends and linear pH calibration curves as
observed in HEPES buffers. Note, however, that the pH calibration
equation is slightly affected by the surrounding medium owing to
differences in proton exchange rates and/or T1 relaxation times
between media (see Fig. S21–S33 and Tables S2–S4, ESI†). Thus, for
in vivo studies, the pH calibration curve must be constructed in a
medium that closely mimics the targeted environment.
´
´
and E. Toth, Angew. Chem., Int. Ed., 2008, 47, 4370–4372.
8 (a) E. L. Que and C. J. Chang, J. Am. Chem. Soc., 2006, 128, 15942–15943;
(b) J. L. Major, G. Parigi, C. Luchinat and T. J. Meade, Proc. Natl. Acad. Sci.
U. S. A., 2007, 104, 13881–13886; (c) A. Bar-Shir, A. A. Gilad, K. W. Y. Chan,
G. Liu, P. C. M. van Zijl, J. W. M. Bulte and M. T. McMahon, J. Am. Chem.
Soc., 2013, 135, 12164–12167.
9 (a) S. Aime, D. D. Castelli, F. Fedeli and E. Terreno, J. Am. Chem. Soc.,
2002, 124, 9364–9365; (b) M. G. Shapiro, G. G. Westmeyer, P. A. Romero,
J. O. Szablowski, B. Ku¨ster, A. Shah, C. R. Otey, R. Langer, F. H. Arnold
and A. Jasanoff, Nat. Biotechnol., 2010, 28, 264–270.
10 (a) I. F. Tannock and D. Rotin, Cancer Res., 1989, 49, 4373–4384;
(b) Y. Kato, S. Ozawa, C. Miyamoto, Y. Maehata, A. Suzuki, T. Maeda
¨
and Y. Baba, Cancer Cell Int., 2013, 13, 89–96; (c) K. Rajamaki,
¨
¨
¨
T. Nordstrom, K. Nurmi, K. E. O. Åkerman, P. T. Kovanen, K. Oorni
and K. K. Eklund, J. Biol. Chem., 2013, 288, 13410–13419.
11 (a) T. L. James, Nuclear Magnetic Resonance in Biochemistry: Principles
and Applications, Academic Press, New York, NY, 1975; (b) I. Bertini
and C. Luchinat, NMR of Paramagnetic Molecules in Biological
Systems, The Benjamin/Cummings Publishing Company Inc., Menlo
Park, CA, 1986.
This research was funded by Northwestern University. A. E. T.
acknowledges the Leifur Eiriksson Foundation for funding sup-
port. We thank Prof. T. J. Meade for use of his HPLC system and
lyophilizer, and Dr. D. Z. Zee for helpful discussions.
12 K. M. Ward, A. H. Aletras and R. S. Balaban, J. Magn. Reson., 2000,
143, 79–87.
13 (a) S. J. Dorazio, P. B. Tsitovich, K. E. Siters, J. A. Spernyak and
J. R. Morrow, J. Am. Chem. Soc., 2011, 133, 14154–14156;
(b) S. J. Dorazio, A. O. Olatunde, J. A. Spernyak and J. R. Morrow,
Chem. Commun., 2013, 49, 10025–10027.
14 (a) S. D. Wolff and R. S. Balaban, Magn. Reson. Med., 1989, 10, 135–144;
(b) M. Zaiss and P. Bachert, Phys. Med. Biol., 2013, 58, R221–R269.
15 (a) G. Liu, Y. Li and M. D. Pagel, Magn. Reson. Med., 2007, 58,
1249–1256; (b) G. Liu, Y. Li, V. R. Sheth and M. D. Pagel, Mol.
Imaging, 2012, 11, 47–57; (c) V. R. Sheth, G. Liu, Y. Li and M. D. Pagel,
Contrast Media Mol. Imaging, 2012, 7, 26–34; (d) V. R. Sheth, Y. Li,
L. Q. Chen, C. M. Howison, C. A. Flask and M. D. Pagel, Magn. Reson.
Med., 2012, 67, 760–768.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) D. V. Hingorani, A. S. Bernstein and M. D. Pagel, Contrast Media
Mol. Imaging, 2015, 10, 245–265; (b) G. Angelovski, Angew. Chem., Int. 16 (a) F. B. Johansson, A. D. Bond, U. G. Nielsen, B. Moubaraki,
Ed., 2016, 55, 7038–7046; (c) S. Sinharay and M. D. Pagel, Annu. Rev.
Anal. Chem., 2016, 9, 95–115.
2 (a) P. Caravan, J. J. Ellison, T. J. McMurry and R. B. Lauffer, Chem.
K. S. Murray, K. J. Berry, J. A. Larrabee and C. J. McKenzie, Inorg.
Chem., 2008, 47, 5079–5092; (b) J.-L. Tian, W. Gu, S.-P. Yan, D.-Z.
Liao and Z.-H. Jiang, Z. Anorg. Allg. Chem., 2008, 634, 1775–1779.
Rev., 1999, 99, 2293–2352; (b) V. Rieke and K. B. Pauly, J. Magn. 17 (a) N. Margiotta, R. Ostuni, V. Gandin, C. Marzano, S. Piccinonna
Reson. Imaging, 2008, 27, 376–390.
and G. Natile, Dalton Trans., 2009, 10904–10913; (b) B. Demoro,
´
´
3 R. Weissleder, B. D. Ross, A. Rehemtulla and S. S. Gambhir, Molecular
Imaging: Principles and Practice, People’s Medical Publishing House,
Shelton, CT, 2010.
F. Caruso, M. Rossi, D. Benıtez, M. Gonzalez, H. Cerecetto,
´
M. Galizzi, L. Malayil, R. Docampo, R. Faccio, A. W. Mombru´,
D. Gambino and L. Otero, Dalton Trans., 2012, 41, 6468–6476.
4 (a) S. Zhang, C. R. Malloy and A. D. Sherry, J. Am. Chem. Soc., 2005, 18 (a) D. F. Evans, J. Chem. Soc., 1959, 2003–2005; (b) E. M. Schubert,
127, 17572–17573; (b) I.-R. Jeon, J. G. Park, C. R. Haney and J. Chem. Educ., 1992, 69, 62.
T. D. Harris, Chem. Sci., 2014, 5, 2461–2465; (c) P. B. Tsitovich, 19 (a) H. Sakiyama, R. Ito, H. Kumagai, K. Inoue, M. Sakamoto,
J. M. Cox, J. B. Benedict and J. R. Morrow, Inorg. Chem., 2016, 55,
700–716; (d) A. E. Thorarinsdottir, A. I. Gaudette and T. D. Harris,
Chem. Sci., 2017, 8, 2448–2456.
Y. Nishida and M. Yamasaki, Eur. J. Inorg. Chem., 2001, 2027–2032;
(b) M. J. Hossain, M. Yamasaki, M. Mikuriya, A. Kuribayashi and
H. Sakiyama, Inorg. Chem., 2002, 41, 4058–4062.
5 (a) S. Aime, D. D. Castelli and E. Terreno, Angew. Chem., Int. Ed., 20 W. T. Dixon, J. Ren, A. J. M. Lubag, J. Ratnakar, E. Vinogradov,
2002, 41, 4334–4336; (b) Y. Wu, T. C. Soesbe, G. E. Kiefer, P. Zhao
and A. D. Sherry, J. Am. Chem. Soc., 2010, 132, 14002–14003;
I. Hancu, R. E. Lenkinski and A. D. Sherry, Magn. Reson. Med., 2010,
63, 625–632.
(c) Y. Huang, D. Coman, P. Herman, J. U. Rao, S. Maritim and 21 D. L. Longo, P. Z. Sun, L. Consolino, F. C. Michelotti, F. Uggeri and
F. Hyder, NMR Biomed., 2016, 29, 1364–1372; (d) K.-L. N. A. Finney, S. Aime, J. Am. Chem. Soc., 2014, 136, 14333–14336.
A. C. Harnden, N. J. Rogers, P. K. Senanayake, A. M. Blamire, 22 P. M. Wood, Biochem. J., 1988, 253, 287–289.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 794--797 | 797