J. Am. Chem. Soc. 1997, 119, 3397-3398
Facile and Remarkably Selective Substitution
3397
Reactions Involving Framework Silicon Atoms in
Silsesquioxane Frameworks
Frank J. Feher,* Shawn H. Phillips, and Joseph W. Ziller
Department of Chemistry, UniVersity of California
IrVine, California 92697-2025
ReceiVed NoVember 12, 1996
Over the past several years, incompletely-condensed silses-
1-5
quioxane frameworks (e.g., 1-2) have attracted attention as
6
-9
models for silica,
aluminosilicates
as ligands in homogeneous models for
1
0-14
15-20
and silica-supported catalysts,
as
°
C. However, it is clear from experiments performed in CDCl3
comonomers for new families of silsesquioxane-based poly-
in NMR tubes that the reaction is complete within 20 min and
that only a slight excess (>5 equiv) of HBF4 is required.
The formation of a fluorine-containing framework was clearly
2
1,22
23
mers,
and as building blocks for network solids. For all
of these applications, any chemical modification of the silses-
quioxane has involved reactions which transform SiOH groups
into new siloxane (i.e., Si-O-Si) or heterosiloxane (i.e., Si-
O-M) linkages. In this paper we report several facile and
remarkably selective substitution reactions involving the frame-
work silicon atoms of 1. In addition to providing access to
several versatile new starting materials, these reactions provide
a powerful new methodology for functionalizing the rapidly
expanding pool of incompletely-condensed silsesquioxane frame-
works.
19
signaled by the appearance of F-coupled resonances at δ 22.27
13
(
(
d, J ) 24 Hz, 3 CH) in the C NMR spectrum and δ -65.43
29
d, J ) 24 Hz, 3 Si) in the Si NMR spectrum as well as a
19
prominent F resonance at δ -138.0. The ORTEP plot from
a preliminary X-ray crystal structure of 3 is shown in Figure 1.
The molecule crystallizes in the space group Pbca with the three
cyclohexyl groups adjacent to Si-F adopting mutually parallel
orientations with respect to their Si-C vectors. This arrange-
ment forces the silsesquioxane framework to adopt a substan-
tially more open structure compared to 1, but this structure can
be accommodated within the normal range of distances and
angles observed for cyclohexyl-substituted silsesquioxane frame-
The reaction of 1 with excess HBF4‚OMe2 occurs quickly
24
upon mixing in CH2Cl2/Et2O or CDCl3. Rather than effecting
cyclodehydration2 or producing a stable salt derived from
protonation of 1, this reaction affords a quantitative NMR yield
of a new Cs-symmetric Si/O framework, which was identified
,6
2
works.
Trifluoride 3 is surprisingly resistant to hydrolysis. It is
indefinitely stable in air, and it is uneffected by refluxing in
CDCl3 (65 °C, 4 h) with water/pyridine. However, net
hydrolysis can be accomplished in two steps by reacting 3 with
Me3SnOH (CDCl3, 65 °C, 12 h) to produce 4, which can be
subsequently hydrolyzed to 5 with aqueous HCl.
1
13
29
19
as 3 on the basis of multinuclear ( H, C, Si, F) NMR data,
25
mass spectral data, and a single-crystal X-ray diffraction study.
When performed on preparative scales in CH2Cl2/Et2O, the
reaction of 1 with excess HBF4‚OMe2 spontaneously produces
large, well-formed crystals of 3 in 96% after several days at 25
24
Both
(
1) Voronkov, M. G.; Lavrent’ev, V. Top. Curr. Chem. 1982, 102, 199-
2
36.
(
2) Feher, F. J.; Budzichowski, T. A. Polyhedron 1995, 14, 3239-53.
(
3) Murugavel, R.; Voigt, A.; Walawalkar, M. G.; Roesky, H. W. Chem.
ReV. 1996, 96, 2205-36.
(
4) Murugavel, R.; Chandrasekhar, V.; Roesky, H. W. Acc. Chem. Res.
1
996, 29, 183-9.
(
(
5) Lickiss, P. D. AdV. Inorg. Chem. 1995, 42, 147-262.
6) Feher, F. J.; Newman, D. A.; Walzer, J. F. J. Am. Chem. Soc. 1989,
1
11, 1741-8.
(
7) Feher, F. J.; Budzichowski, T. A.; Rahimian, K.; Ziller, J. W. J. Am.
Chem. Soc. 1992, 114, 3859-66.
(
(
(
(
8) Feher, F. J.; Newman, D. A. J. Am. Chem. Soc. 1990, 112, 1931-6.
9) Feher, F. J.; Phillips, S. H. J. Organomet. Chem. 1996, 521, 391-3.
10) Feher, F. J.; Weller, K. J. Organometallics 1990, 9, 2638-40.
11) Feher, F. J.; Weller, K. J.; Ziller, J. W. J. Am. Chem. Soc. 1992,
1
14, 9686-8.
12) Feher, F. J.; Budzichowski, T. A.; Weller, K. J. J. Am. Chem. Soc.
989, 111, 7288-9.
13) Montero, M. L.; Uson, I.; Roesky, H. W. Angew. Chem., Int. Ed.
(
1
(
Engl. 1994, 33, 2103-4.
14) Chandraskhar, V.; Murugavel, R.; Voigt, A.; Roesky, H. W.;
Schmidt, H. G.; Noltemeyer, M. Organometallics 1996, 15, 918.
(
(
15) Feher, F. J.; Green, M.; Orpen, A. G. J. Chem. Soc., Chem. Commun.
1
986, 291-3.
(
(
(
16) Feher, F. J.; Blanski, R. L. J. Am. Chem. Soc. 1992, 114, 5886-7.
17) Feher, F. J.; Walzer, J. F. Inorg. Chem. 1991, 30, 1689-94.
18) Feher, F. J.; Blanski, R. L. J. Chem. Soc., Chem. Commun. 1990,
1
614-6.
(
19) Feher, F. J.; Walzer, J. F.; Blanski, R. L. J. Am. Chem. Soc. 1991,
1
13, 3618-9.
(
20) Buys, I. E.; Hambley, T. W.; Houlton, D. J.; Maschmeyer, T.;
Masters, A. F.; Smith, A. K. J. Mol. Catal. 1994, 86, 309-18.
(
(
21) Lichtenhan, J. D. Comments Inorg. Chem. 1995, 17, 115-30.
22) Lichtenhan, J. D. In Polymeric Material Encyclopedia; Salamone,
J. C., Ed.; CRC Press: New York, 1996; Vol. 10, pp 7768-78.
(
23) Abbenhuis, H. C. L.; Herwijnen, H. W. G. v.; Vansanten, R. A. J.
Chem. Soc., Chem. Commun. 1996, 1941-2.
24) Detailed experimental procedures for the synthesis and characteriza-
tion of all new compounds are provided in the Supporting Information.
(
S0002-7863(96)03904-2 CCC: $14.00 © 1997 American Chemical Society