Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C8CC06972G
COMMUNICATION
Journal Name
5
6
N. Huang, P. Wang, M. A. Addicoat, T. Heine and D. Jiang,
Angew. Chem. Int. Ed., 2017, 56, 4982.
Z. Li, H. Li, X. Guan, J. Tang, Y. Yusran, Z. Li, M. Xue, Q. Fang, Y.
activities (Fig. S20), owing to the well preserved composition,
porosity and morphology of the recovered catalyst (Figs. S21-S23).
Besides, diverse epoxides including epibromohydrin, styrene oxide,
glycidyl phenyl ether, allyl glycidyl ether and 2-butyloxirane can be
efficiently converted into the cyclic carbonates with high yields of
90~99% under both 1 and 0.1 MPa CO2 pressure (Table S8). These
results demonstrate well substrate compatibility of V-PCIF-Br.
Evidently, V-PCIF-Br performs as a metal-solvent-additive-free
remarkable heterogeneous catalyst for cycloaddition of CO2. The
high activity of V-PCIF-Br can be attributed to its intrinsic
characteristics of high ionic density (i.e. nucleophilic Br− anions),
abundant mesoporosity and POSS-derived Si-OH groups. In detail,
the proposed catalytic process for the formation cyclic carbonates
using V-PCIF-Br is described in Scheme S4: (i) the activation of
epoxide is enhanced by H-bonding interaction between its O and H
atoms originated from POSS-derived Si-OH groups, which is a key
step as pointed out by previous reports;14,34,35 (ii) the activated
substrate 1 is subsequently attacked by nucleophilic Br− anions to
form an oxy-ion intermediate 2;7 (iii) the active intermediate then
reacts with inserted CO2 molecules to produce the corresponding
cyclic carbonate released from the catalyst V-PCIF-Br. This synthetic
route makes the high dispersion and homogeneous distribution of
Br− anions and Si-OH groups around POSS cores in V-PCIFs, which
accelerates the activation and conversion of epoxides and CO2.
These enriched ionic sites within high-surface-area porous cationic
polymers also improve the performance in CO2 capture and
enhance the concentration of CO2 inside the catalyst, thus
dramatically promoting catalytic activities under mild conditions.
In summary, a new synthetic strategy is reported to achieve
POSS and viologen-linked porous cationic frameworks induced by
Zincke reaction under solvothermal conditions. The obtained V-
PCIF-Br possesses a high surface area with versatile features of
micro-/mesoporosity, abundant ionic sites and enriched Si-OH
groups, which together contributes to the simultaneous CO2
capture and catalytic conversion of CO2 into value-added products.
Based on this Zincke reaction’s synthetic strategy, more ionic
porous organic frameworks are on the way, towards diverse
applications in catalysis, adsorption, energy storage and conversion.
We are grateful for financial support from National Natural
Science Foundation of China (Nos. 21603089, 21503098 and
21606066), Jiangsu Province Science Foundation for Youths
(BK20160209), NSF of the Higher Education Institutions of Jiangsu
Province (16KJB150014), NSITP (201710320041), TAPP and PAPD.
Yan, V. Valtchev and S. Qiu, J. Am. Chem. Soc., 2017, 139
17771.
O. Buyukcakir, S. H. Je, S. N. Talapaneni, D. Kim and A.
,
7
8
Coskun, ACS Appl. Mater. Interfaces, 2017, 9, 7209.
L.-Z. Peng, P. Liu, Q.-Q. Cheng, W.-J. Hu, Y. A. Liu, J.-S. Li, B.
Jiang, X.-S. Jia, H. Yang and K. Wen, Chem. Commun., 2018,
54, 4433.
S. Fischer, J. Schmidt, P. Strauch and A. Thomas, Angew.
Chem. Int. Ed., 2013, 52, 12174.
9
10 O. Buyukcakir, S. H. Je, D. S. Choi, S. N. Talapaneni, Y. Seo, Y.
Jung, K. Polychronopoulouc and A. Coskun, Chem. Commun.,
2016, 52, 934.
11 J. Li, D. Jia, Z. Guo, Y. Liu, Y. Lyu, Y. Zhou and J. Wang, Green
Chem., 2017, 19, 2675.
12 C. Gao, G. Chen, X. Wang, J. Li, Y. Zhou and J. Wang, Chem.
Commun., 2015, 51, 4969.
13 X. Wang, Y. Zhou, Z. Guo, G. Chen, J. Li, Y. Shi, Y. Liu and J.
Wang, Chem. Sci., 2015,
14 Z. Guo, Q. Jiang, Y. Shi, J. Li, X. Yang, W. Hou, Y. Zhou and J.
Wang, ACS Catal., 2017, , 6770.
15 D. B. Cordes, P. D. Lickiss and F. Rataboul, Chem. Rev., 2010,
110, 2081.
16 M. F. Roll, J. W. Kampf, Y. Kim, E. Yi and R. M. Laine, J. Am.
Chem. Soc., 2010, 132, 10171.
17 W. Chaikittisilp, A. Sugawara, A. Shimojima and T. Okubo,
Chem. Eur. J., 2010, 16, 6006.
18 M. Ge and H. Liu, J. Mater. Chem. A, 2016, 4, 16714.
19 W. Chaikittisilp, M. Kubo, T. Moteki, A. S.-Narutaki, A.
Shimojima, and T. Okubo, J. Am. Chem. Soc., 2011, 133
6, 6916.
7
,
13832.
20 R. Shen, Y. Liu, W. Yang, Y. Hou, X. Zhao and H. Liu, Chem.
Eur. J., 2017, 23, 13465.
21 I. Nischang, O. Brüggeman and I. Teasdale, Angew. Chem. Int.
Ed., 2011, 50, 4592.
22 Y. Leng, J. Liu, P. Jiang and J. Wang, ACS Sustainable Chem.
Eng., 2015, 3, 170.
23 J. Zhao, Y. Leng, P. Jiang, J. Wang and C. Zhang, New J.
Chem., 2016, 40, 1022.
24 G. Chen, Y. Zhou, X. Wang, J. Li, S. Xue, Y. Liu, Q. Wang and J.
Wang, Sci. Rep., 2015,
25 G. Das, T. Skorjanc, S. K. Sharma, F. Gandara,
5, 11236.
́
M. Lusi, D. S.
S. Rao, S. Vimala, S. K. Prasad, J. Raya, D. S. Han, R.
Jagannathan, J.-C. Olsen and A. Trabolsi, J. Am. Chem. Soc.,
2017, 139, 9558.
26 G. Das, T. Skorjanc, S. K. Sharma, T. Prakasam,C. P.-Iglesias, D.
S. Han, J. Raya, J.-C.Olsen, R. Jagannathan and A. Trabolsi,
ChemNanoMat, 2018, 4, 61.
27 F. Biedermann and O. A. Scherman, J. Phys. Chem. B, 2012,
116, 2842.
28 T. Alphazan, P. Florian and C. Thieuleux, Phys. Chem. Chem.
Phys., 2017, 19, 8595.
29 S. Fischer, A. Schimanowitz, R. Dawson, I. Senkovska, S.
Conflicts of interest
Kaskel and A. Thomas, J. Mater. Chem. A, 2014, 2, 11825.
30 Q. Sun,Y. Jin, B. Aguila, X. Meng, S. Ma and F.-S. Xiao,
ChemSusChem, 2017, 10, 1160.
There are no conflicts of interest to declare.
31 T.-T. Liu, Jun Liang, Y.-B. Huang and R. Cao, Chem. Commun.,
2016, 52, 13288.
Notes and references
32 Y. Chen, R. Luo, Q. Xu, J. Jiang, X. Zhou and H. Ji,
ChemSusChem, 2017, 10, 2534.
33 Y. Chen, R. Luo, Q. Xu, J. Jiang, X. Zhou and H. Ji, ACS
1
2
D. Xu, J. Guo and F. Yan, Prog. Polym. Sci., 2018, 79, 121.
J.-K. Sun, M. Antonietti and J. Yuan, Chem. Soc. Rev., 2016,
45, 6627.
Y. Du, H. Yang, J. M. Whiteley, S. Wan, Y. Jin, S.-H. Lee and W.
Zhang, Angew. Chem. Int. Ed., 2016, 55, 1737.
H. Ma, B. Liu, B. Li, L. Zhang, Y.-G. Li, H.-Q. Tan, H.-Y. Zang
and G. Zhu, J. Am. Chem. Soc., 2016, 138, 5897.
Sustainable Chem. Eng., 2018, 6, 1074.
3
4
34 J. Wang, J. Leong and Y. Zhang, Green Chem., 2014, 16, 4515.
35 A. M. Hardman-Baldwin and A. E. Mattson, ChemSusChem,
2014, 7, 3275.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins