C O M M U N I C A T I O N S
Scheme 1. Proposed Mechanism for the Asymmetric Formation of
Oxazinolactam 12
Scheme 2. Proposed Mechanism for the Dehydrogenation and
Cycloaddition of N-Hydroxy Formate Esters
a bimolecular cycloaddition that would be competitive with the
bimolecular reoxidation of Ru(II).
Acknowledgment. This research was supported in part by a
grant from the NIH. C.P.C. thanks Xerox Corporation for the Xerox
Technical Minority Scholarships, and the UC Regents for a
dissertation fellowship.
A more Lewis acidic catalyst could produce a stronger oxidant
and perhaps stabilize complex 15. Indeed, improved yields and
higher enantiomeric excesses were found with electron-withdrawing
substituents at positions R1 and R2 in 13. (Supporting Information).
The most effective substitution pattern was the dinitro derivative
13b (R1, R2 ) NO2). This complex is a competent catalyst both
for the oxidation of hydroxamic acid 1 (48% yield of cycloadduct
3 with 1 M CHD) as well as for the oxidation of hydroxamic acid
7 (66% yield of cycloadduct 9). More importantly, the dinitro
catalyst 13b delivers cycloadduct 12 in 43% ee.
Supporting Information Available: Experimental information,
including the preparation of compounds 3, 6, 7, 9, 10, 12, and 13. This
References
(1) (a) Corey, E. J. Angew. Chem., Int. Ed. 2002, 41, 1650. (b) ComprehensiVe
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.;
Springer: Berlin, 1999; Vol. 3, pp 1178-1235. (c) Jorgensen, K. A.
Angew. Chem., Int. Ed. 2000, 39, 3558. (d) Corey, E. J.; Guzman-Perez,
A. Angew. Chem., Int. Ed. 1998, 37, 488. (e) Kagan, H. B.; Riant, O.
Chem. ReV. 1992, 92, 1007. (f) Dias, L. C. J. Braz. Chem. Soc. 1997, 8,
289.
The enantioselectivity highlights the importance of intramolecu-
larity for asymmetric induction; the bimolecular reaction of 4 (1
M CHD) with catalyst 13b resulted in only 9% ee.
(2) (a) Tietze, L. F.; Kettschau, G. Top. Curr. Chem. 1997, 189, 1. (b) Streith,
J.; Defoin, A. Synlett 1996, 189. (c) Kibayashi, C.; Aoyagi, S. Synlett
1995, 873. (d) Zuman, P.; Shah, B. Chem. ReV. 1994, 94, 1621. (e) Streith,
J.; Defoin, A. Synthesis 1994, 1107. (f) Waldmann, H. Synthesis 1994,
535. (g) Weinreb, S. M.; Staib, R. R. Tetrahedron 1982, 38, 3087. (h)
Weinreb, S. M. In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I., Paquette, L. A., Eds.; Pergamon Press: New York, 1991; pp
401-512. (i) Kirby, G. W. Chem. Soc. ReV. 1977, 6, 1.
(3) Yamamoto, Y.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 4128.
(4) Cohen, A. D.; Zeng, B.-B.; King, S. B.; Toscano, J. P. J. Am. Chem. Soc.
2003, 125, 1444.
(5) Vogt, P. F.; Miller, M. J. Tetrahedron 1998, 54, 1317.
(6) (a) Defoin, A.; Pires, J.; Tissot, I.; Tschamber, T.; Bur, D.; Zehnder, M.;
Streith, J. Tetrahedron: Asymmetry 1991, 2, 1209. (b) Ozawa, T.; Aoyagi,
S.; Kibayashi, C. J. Org. Chem. 2001, 66, 3338. (c) Wang, Y.-C.; Lu,
T.-M.; Elango, S.; Lin, C.-K.; Tsai, C.-T.; Yan, T.-H. Tetrahedron:
Asymmetry 2002, 13, 691. (d) Ooi, T.; Maruoka, K. In ComprehensiVe
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.;
Springer: Berlin, 1999; Vol. 3, pp 1237-1254.
(7) Flower, K. R.; Lightfoot, A. P.; Wan, H.; Whiting, A. Chem. Commun.
2001, 18, 1812.
(8) Iwasa, S.; Fakhruddin, A.; Tsukamoto, Y.; Kameyama, M.; Nishiyama,
H. Tetrahedron Lett. 2002, 43, 6159.
(9) Flower, K. R.; Lightfoot, A. P.; Wan, H.; Whiting, A. J. Chem. Soc.,
Perkin Trans. 1 2002, 18, 2058.
(10) (a) Sparks, S. M.; Vargas, J. D.; Shea, K. J. Org. Lett. 2000, 2, 1473. (b)
Chow, C. P.; Sparks, S. M.; Shea, K. J. Org. Lett. 2002, 4, 2637.
(11) Sparks, S. M.; Chow, C. P.; Zhou, L.; Shea, K. J. J. Org. Chem. 2004,
69, 3025.
(12) Yao, X.; Qiu, M.; Lu, W.; Chen, H.; Zheng, Z. Tetrahedron: Asymmetry
2001, 12, 197.
(13) Griffith, W. P. Chem. Soc. ReV. 1992, 179.
(14) (a) Roecker, L.; Meyer, T. J. J. Am. Chem. Soc. 1987, 109, 746. (b)
Dobson, J. C.; Helms, J. H.; Doppelt, P.; Sullivan, B. P.; Hatfield, W. E.;
Meyer, T. J. Inorg. Chem. 1989, 28, 2200.
(15) Meyer, T. J.; Huynh, M. H. Inorg. Chem. 2003, 42, 8140.
(16) Szczepura, L. F.; Maricich, S. M.; See, R. F.; Churchill, M. R.; Takeuchi,
K. J. Inorg. Chem. 1995, 34, 4198.
(17) (a) Lee, J.; Chen, L.; West, A. H.; Richter-Addo, G. B. Chem. ReV. 2002,
102, 1019. (b) Liang, J.-L.; Huang, J.-S.; Zhou, Z.-Y.; Cheung, K.-K.;
Che, C.-M. Chem.sEur. J. 2001, 7, 2306.
Possible explanations for the modest enantioselectivity include
breakdown of complex 15 prior to cycloaddition by dissociation
of the acyl nitroso intermediate or reoxidation by TBHP to 14 and/
or cycloaddition within the complex with an intrinsically low
enantioselectivity. Focusing on the competing reoxidation step, we
note that the lifetime of 15 is dependent on the rate of reoxidation,
a bimolecular reaction. Suppression of this bimolecular reaction
might be achieved by decreasing the overall concentration.
Incremental dilution to 7.2 × 10-2 M showed increase in
chemical yield up to 82%. A parallel trend in enantioselectivity
was observed with decreasing concentration. The optimum forma-
tion of cycloadduct 12 was achieved at 7.2 × 10-2 M. These
conditions also resulted in improved enantioselectivity (71%). The
enantioselectivity was further enhanced (75% ee) by lowering the
temperature to 15 °C. Continued decrease in reaction concentration
resulted in reduced yield.
Further refinement of the mechanism is now warranted (Scheme
2). Ru(IV) oxo complexes are known dehydrogenation reagents.13,14
Hydrogen transfer is expected to produce a Ru(II) hydrate.15 The
Ru hydrate can bind the nitroso formate intermediate by a hydrogen
bond (15a) or it can undergo ligand replacement to produce 15b.
(The H-bonded complex would be the first intermediate in the ligand
exchange.)16 There is ample precedent for facile exchange at Ru-
(II) centers16 as well as for Ru(II) nitroso complexes.17 Coordination
of the acyl formate in 15a and/or 15b is expected to catalyze the
Diels-Alder cycloaddition in light of recent experimental evidence
regarding the acceleration of R-acetoxynitroso cycloadditions by
Lewis acids.18 Cycloaddition from either intermediate (15a,b) could
account for the observed asymmetry (Scheme 2).
(18) Calvet, G.; Dussaussios, M.; Blanchard, N.; Kouklovsky, C. Org. Lett.
2004, 6, 2449.
The low (or no) enantioselectivity for the intermolecular reaction
is consistent with the proposal since the Diels-Alder step involves
JA050059B
9
J. AM. CHEM. SOC. VOL. 127, NO. 11, 2005 3679